Skip to content

Instantly share code, notes, and snippets.

@pssguy
Last active December 18, 2015 19:29
Show Gist options
  • Save pssguy/5832902 to your computer and use it in GitHub Desktop.
Save pssguy/5832902 to your computer and use it in GitHub Desktop.
Provides plots and tables based on the packages downloaded from the RStudio CRAN mirror. It is a Shiny App using rCharts so users can specify packages, countries and weeks of interest them and get interactive charts with tooltips and clickable links to package pdfs. The gist utilizes a limited amout of data. The production App can be viewed at h…
package mostDownloads bestRank week tot rank
shiny 1018 70 2013-06-10 1018 70
RColorBrewer 4376 4 2013-04-29 3408 4
scales 3976 6 2012-12-10 1571 6
scales 3976 6 2012-12-03 1720 6
reshape2 4330 6 2012-12-17 1312 6
reshape2 4330 6 2013-01-07 2199 6
reshape2 4330 6 2013-05-13 3660 6
proto 3902 3 2012-12-24 963 3
ggplot2 5291 1 2013-03-25 3160 1
ggplot2 5291 1 2013-03-18 3797 1
ggplot2 5291 1 2013-03-11 4057 1
ggplot2 5291 1 2013-04-29 4138 1
ggplot2 5291 1 2013-05-27 4308 1
ggplot2 5291 1 2013-05-06 4358 1
ggplot2 5291 1 2013-04-01 4495 1
ggplot2 5291 1 2013-03-04 4745 1
digest 6416 1 2013-02-11 3633 1
digest 6416 1 2013-01-14 3670 1
digest 6416 1 2013-02-18 4101 1
digest 6416 1 2013-01-28 4303 1
digest 6416 1 2013-01-21 6416 1
colorspace 5610 1 2013-02-25 4158 1
colorspace 5610 1 2013-04-08 4522 1
colorspace 5610 1 2013-04-15 4963 1
colorspace 5610 1 2013-04-22 5610 1
stringr 4880 2 2012-12-24 1010 2
stringr 4880 2 2012-12-31 1268 2
stringr 4880 2 2012-12-17 1584 2
stringr 4880 2 2013-01-07 2590 2
stringr 4880 2 2013-02-11 3509 2
stringr 4880 2 2013-01-28 3656 2
plyr 5373 1 2012-12-24 1058 1
plyr 5373 1 2012-11-05 1233 1
plyr 5373 1 2012-12-31 1390 1
plyr 5373 1 2012-11-12 1463 1
plyr 5373 1 2012-11-19 1468 1
plyr 5373 1 2012-12-17 1907 1
plyr 5373 1 2012-11-26 1944 1
plyr 5373 1 2012-12-10 2206 1
plyr 5373 1 2012-12-03 2389 1
plyr 5373 1 2013-01-07 2732 1
plyr 5373 1 2013-06-03 4176 1
plyr 5373 1 2013-05-13 4579 1
plyr 5373 1 2013-05-20 4757 1
plyr 5373 1 2013-06-10 5373 1
country week tot pc rank country.name
BR 2013-03-04 12542 3.292 8 Brazil
BR 2013-02-25 8421 2.101 12 Brazil
BR 2012-12-03 1563 0.915 18 Brazil
BR 2013-04-29 4797 1.456 18 Brazil
BR 2013-02-04 2621 0.935 16 Brazil
BR 2013-01-21 8431 2.95 7 Brazil
BR 2013-03-25 4205 1.619 14 Brazil
BR 2013-04-08 5460 1.354 15 Brazil
BR 2012-11-26 6571 3.724 6 Brazil
BR 2013-05-06 10346 3.042 9 Brazil
BR 2013-04-15 7102 1.721 10 Brazil
BR 2012-12-24 930 0.662 17 Brazil
BR 2013-05-13 7093 1.976 13 Brazil
BR 2013-01-28 7867 2.578 10 Brazil
BR 2013-02-18 2564 0.798 22 Brazil
BR 2012-10-29 835 1.304 10 Brazil
BR 2013-04-22 6049 1.268 16 Brazil
BR 2012-11-05 2096 2.243 10 Brazil
BR 2013-01-14 1793 0.708 21 Brazil
BR 2013-05-27 12713 2.857 6 Brazil
BR 2013-01-07 1468 0.604 21 Brazil
BR 2013-05-20 28346 6.21 5 Brazil
BR 2013-03-18 9606 2.782 11 Brazil
BR 2012-12-17 1280 0.722 19 Brazil
BR 2013-03-11 4432 0.923 17 Brazil
BR 2013-02-11 6784 2.049 14 Brazil
BR 2012-12-10 10022 5.051 5 Brazil
BR 2012-11-19 13853 8.78 3 Brazil
BR 2013-06-03 4505 1.048 19 Brazil
BR 2013-06-10 20945 4.541 5 Brazil
BR 2012-11-12 2379 1.853 15 Brazil
BR 2012-12-31 1267 0.901 18 Brazil
BR 2013-04-01 9741 1.965 8 Brazil
CN 2013-02-25 21078 5.258 5 China
CN 2013-05-20 19009 4.165 7 China
CN 2013-03-18 11512 3.334 8 China
CN 2013-05-27 11669 2.623 7 China
CN 2012-11-12 2303 1.794 16 China
CN 2013-03-25 11228 4.322 5 China
CN 2013-04-08 26825 6.651 3 China
CN 2013-04-01 17528 3.537 4 China
CN 2013-05-13 16161 4.502 5 China
CN 2013-04-29 9646 2.927 9 China
CN 2012-11-19 7986 5.061 5 China
CN 2013-03-04 11073 2.907 10 China
CN 2012-12-03 19566 11.449 2 China
CN 2012-10-29 844 1.318 9 China
CN 2012-12-24 5198 3.699 6 China
CN 2013-04-22 34306 7.189 2 China
CN 2013-06-03 21868 5.089 4 China
CN 2013-02-04 16871 6.016 3 China
CN 2012-11-05 1802 1.929 13 China
CN 2013-03-11 18927 3.94 5 China
CN 2013-01-28 19021 6.233 4 China
CN 2012-12-17 6005 3.39 5 China
CN 2013-01-21 8444 2.955 6 China
CN 2013-01-07 7600 3.129 6 China
CN 2013-02-11 11294 3.411 6 China
CN 2012-12-31 8653 6.156 4 China
CN 2013-06-10 21950 4.759 4 China
CN 2012-11-26 6467 3.665 7 China
CN 2013-05-06 15004 4.411 4 China
CN 2012-12-10 5502 2.773 9 China
CN 2013-04-15 15749 3.817 6 China
CN 2013-01-14 6602 2.607 6 China
CN 2013-02-18 8124 2.527 9 China
DE 2012-11-19 26372 16.714 1 Germany
DE 2012-12-10 17184 8.661 2 Germany
DE 2012-12-03 8044 4.707 6 Germany
DE 2013-05-13 18600 5.182 4 Germany
DE 2013-04-01 48070 9.699 2 Germany
DE 2013-01-14 20635 8.148 2 Germany
DE 2013-04-29 18831 5.715 2 Germany
DE 2013-03-18 14119 4.089 4 Germany
DE 2012-11-05 6539 6.999 2 Germany
DE 2012-12-17 7240 4.087 4 Germany
DE 2013-01-07 10208 4.203 4 Germany
DE 2013-04-15 23100 5.598 3 Germany
DE 2012-11-12 7330 5.71 3 Germany
DE 2012-11-26 9611 5.447 3 Germany
DE 2013-02-11 16069 4.853 4 Germany
DE 2013-02-25 19190 4.787 6 Germany
DE 2013-06-10 25345 5.495 2 Germany
DE 2013-03-11 86663 18.04 2 Germany
DE 2012-10-29 1762 2.751 5 Germany
DE 2013-03-25 9672 3.723 6 Germany
DE 2013-05-06 24098 7.084 2 Germany
DE 2013-03-04 14035 3.684 6 Germany
DE 2013-05-20 19852 4.349 6 Germany
DE 2012-12-24 2742 1.952 11 Germany
DE 2012-12-31 8841 6.29 3 Germany
DE 2013-01-28 13449 4.407 7 Germany
DE 2013-02-04 19210 6.85 2 Germany
DE 2013-05-27 22414 5.038 3 Germany
DE 2013-01-21 24404 8.539 2 Germany
DE 2013-04-22 24859 5.209 4 Germany
DE 2013-04-08 19988 4.956 4 Germany
DE 2013-02-18 13427 4.177 4 Germany
DE 2013-06-03 25976 6.045 3 Germany
ES 2013-01-07 6871 2.829 7 Spain
ES 2013-02-18 10183 3.168 7 Spain
ES 2013-05-06 8849 2.601 10 Spain
ES 2013-02-11 11039 3.334 8 Spain
ES 2013-03-04 10800 2.835 11 Spain
ES 2012-12-31 3648 2.595 12 Spain
ES 2013-04-15 17999 4.362 5 Spain
ES 2012-12-24 7757 5.521 3 Spain
ES 2013-06-10 16139 3.499 6 Spain
ES 2013-03-25 12537 4.826 4 Spain
ES 2012-12-10 4487 2.262 11 Spain
ES 2013-01-21 6114 2.139 10 Spain
ES 2013-03-18 12756 3.695 5 Spain
ES 2013-05-20 51600 11.305 2 Spain
ES 2013-04-01 9417 1.9 9 Spain
ES 2013-04-22 18618 3.902 5 Spain
ES 2013-05-27 13831 3.109 5 Spain
ES 2013-06-03 10195 2.373 11 Spain
ES 2012-12-17 4124 2.328 10 Spain
ES 2013-02-25 15316 3.821 7 Spain
ES 2012-11-05 3820 4.089 6 Spain
ES 2013-01-14 5398 2.131 11 Spain
ES 2012-11-26 4435 2.513 12 Spain
ES 2013-03-11 9431 1.963 10 Spain
ES 2013-02-04 6745 2.405 9 Spain
ES 2013-04-29 9674 2.936 8 Spain
ES 2012-10-29 1245 1.944 6 Spain
ES 2013-01-28 5544 1.817 11 Spain
ES 2012-11-12 3139 2.445 11 Spain
ES 2013-05-13 20226 5.635 3 Spain
ES 2012-12-03 8991 5.261 4 Spain
ES 2013-04-08 12906 3.2 7 Spain
ES 2012-11-19 4583 2.905 10 Spain
FR 2013-04-01 13402 2.704 6 France
FR 2013-03-18 11843 3.43 7 France
FR 2013-05-20 9086 1.991 12 France
FR 2013-05-27 11270 2.533 8 France
FR 2013-06-10 14958 3.243 8 France
FR 2013-03-11 12279 2.556 8 France
FR 2013-03-04 12387 3.252 9 France
FR 2012-11-19 7810 4.95 6 France
FR 2013-05-06 6062 1.782 14 France
FR 2013-01-21 5770 2.019 12 France
FR 2012-12-03 4136 2.42 12 France
FR 2013-04-08 10930 2.71 9 France
FR 2012-12-31 2620 1.864 13 France
FR 2013-02-11 6561 1.981 15 France
FR 2013-02-25 8258 2.06 13 France
FR 2013-03-25 7539 2.902 8 France
FR 2013-02-18 17645 5.489 3 France
FR 2012-10-01 1 0.257 4 France
FR 2012-11-26 4056 2.299 15 France
FR 2013-04-29 8908 2.703 13 France
FR 2012-12-24 2060 1.466 12 France
FR 2012-11-05 1979 2.118 12 France
FR 2013-04-22 15600 3.269 8 France
FR 2012-11-12 6426 5.006 4 France
FR 2013-01-07 9201 3.788 5 France
FR 2013-05-13 8534 2.377 11 France
FR 2012-12-17 4174 2.356 9 France
FR 2013-06-03 12797 2.978 6 France
FR 2013-04-15 9075 2.199 8 France
FR 2012-10-29 650 1.015 14 France
FR 2013-01-14 7626 3.011 4 France
FR 2013-01-28 12571 4.119 8 France
FR 2013-02-04 5949 2.121 10 France
FR 2012-12-10 10278 5.181 4 France
GB 2013-04-01 16018 3.232 5 United Kingdom
GB 2013-05-13 15769 4.393 6 United Kingdom
GB 2013-04-15 18603 4.508 4 United Kingdom
GB 2013-02-11 8113 2.45 10 United Kingdom
GB 2013-02-04 9593 3.421 6 United Kingdom
GB 2012-12-24 1840 1.31 13 United Kingdom
GB 2013-05-27 11169 2.51 9 United Kingdom
GB 2013-03-04 15848 4.16 4 United Kingdom
GB 2012-12-10 3878 1.955 14 United Kingdom
GB 2012-11-19 6562 4.159 7 United Kingdom
GB 2012-11-05 3252 3.481 7 United Kingdom
GB 2013-04-22 16074 3.368 7 United Kingdom
GB 2013-02-25 12004 2.994 8 United Kingdom
GB 2013-03-11 21265 4.427 4 United Kingdom
GB 2013-03-18 12163 3.523 6 United Kingdom
GB 2013-06-03 13402 3.119 5 United Kingdom
GB 2013-04-08 16092 3.99 6 United Kingdom
GB 2012-11-12 3666 2.856 8 United Kingdom
GB 2013-01-21 9644 3.375 4 United Kingdom
GB 2012-11-26 4550 2.579 11 United Kingdom
GB 2012-12-17 3872 2.186 11 United Kingdom
GB 2012-12-31 4912 3.495 9 United Kingdom
GB 2013-02-18 13391 4.166 5 United Kingdom
GB 2013-04-29 15716 4.77 4 United Kingdom
GB 2013-05-06 11976 3.521 5 United Kingdom
GB 2012-12-03 4691 2.745 10 United Kingdom
GB 2013-01-14 7468 2.949 5 United Kingdom
GB 2013-06-10 11762 2.55 10 United Kingdom
GB 2013-01-28 14325 4.694 6 United Kingdom
GB 2013-01-07 6046 2.489 8 United Kingdom
GB 2013-05-20 29154 6.387 4 United Kingdom
GB 2013-03-25 18900 7.275 3 United Kingdom
GB 2012-10-29 815 1.273 12 United Kingdom
IN 2012-12-17 10274 5.799 3 India
IN 2013-03-25 4525 1.742 13 India
IN 2012-12-24 3094 2.202 9 India
IN 2013-03-11 15168 3.157 7 India
IN 2013-01-14 10952 4.325 3 India
IN 2013-04-22 9812 2.056 10 India
IN 2013-02-04 15253 5.439 4 India
IN 2013-01-21 5728 2.004 13 India
IN 2013-04-15 13055 3.164 7 India
IN 2013-03-18 21182 6.135 2 India
IN 2013-06-03 10803 2.514 7 India
IN 2012-11-05 2590 2.772 9 India
IN 2013-02-18 6991 2.175 10 India
IN 2013-06-10 12862 2.789 9 India
IN 2013-02-25 22871 5.705 4 India
IN 2013-01-07 4199 1.729 14 India
IN 2012-12-31 5601 3.985 7 India
IN 2012-12-10 8049 4.057 6 India
IN 2013-01-28 19480 6.384 3 India
IN 2012-12-03 5526 3.233 8 India
IN 2013-03-04 9371 2.46 12 India
IN 2013-04-29 11402 3.46 6 India
IN 2012-10-29 427 0.667 17 India
IN 2012-11-26 3517 1.993 17 India
IN 2013-05-20 6494 1.423 17 India
IN 2013-04-01 6204 1.252 18 India
IN 2013-02-11 4226 1.276 18 India
IN 2013-05-27 10044 2.257 10 India
IN 2012-11-19 5033 3.19 9 India
IN 2013-05-13 11440 3.187 7 India
IN 2013-04-08 7391 1.832 12 India
IN 2013-05-06 11207 3.295 7 India
IN 2012-11-12 3473 2.705 9 India
JP 2013-04-29 16095 4.885 3 Japan
JP 2012-12-10 12416 6.258 3 Japan
JP 2013-02-18 27914 8.684 2 Japan
JP 2012-10-29 826 1.29 11 Japan
JP 2013-04-08 43513 10.788 2 Japan
JP 2012-12-24 7635 5.434 4 Japan
JP 2013-03-11 59680 12.423 3 Japan
JP 2013-04-22 29296 6.139 3 Japan
JP 2013-04-01 38492 7.767 3 Japan
JP 2012-11-26 7088 4.017 5 Japan
JP 2013-03-18 19906 5.766 3 Japan
JP 2013-06-10 23527 5.101 3 Japan
JP 2013-01-28 26896 8.814 2 Japan
JP 2013-04-15 65099 15.777 2 Japan
JP 2013-05-13 27402 7.634 2 Japan
JP 2013-03-04 34170 8.97 2 Japan
JP 2013-06-03 57445 13.369 2 Japan
JP 2012-12-17 13181 7.44 2 Japan
JP 2012-12-03 4946 2.894 9 Japan
JP 2013-02-11 18678 5.641 2 Japan
JP 2013-05-20 36121 7.914 3 Japan
JP 2013-05-06 20323 5.975 3 Japan
JP 2012-12-31 12443 8.853 2 Japan
JP 2013-05-27 65453 14.711 2 Japan
JP 2013-03-25 19351 7.449 2 Japan
JP 2012-11-12 7410 5.772 2 Japan
JP 2013-01-14 5410 2.136 10 Japan
JP 2012-11-05 2080 2.226 11 Japan
JP 2012-11-19 5977 3.788 8 Japan
JP 2013-02-25 25714 6.415 3 Japan
JP 2013-01-07 27211 11.204 2 Japan
JP 2013-02-04 8939 3.188 7 Japan
JP 2013-01-21 17247 6.035 3 Japan
NL 2013-02-18 4952 1.541 16 Netherlands
NL 2013-06-03 5725 1.332 17 Netherlands
NL 2013-01-07 2987 1.23 17 Netherlands
NL 2013-06-10 15371 3.333 7 Netherlands
NL 2012-12-10 2237 1.128 20 Netherlands
NL 2013-02-04 4328 1.543 13 Netherlands
NL 2013-04-15 5669 1.374 15 Netherlands
NL 2013-04-08 5834 1.446 14 Netherlands
NL 2013-05-20 6635 1.454 16 Netherlands
NL 2013-03-25 4588 1.766 12 Netherlands
NL 2013-02-11 12663 3.824 5 Netherlands
NL 2013-03-04 14922 3.917 5 Netherlands
NL 2013-02-25 9334 2.328 10 Netherlands
NL 2013-05-06 5012 1.473 17 Netherlands
NL 2013-01-28 3927 1.287 15 Netherlands
NL 2012-11-05 1113 1.191 17 Netherlands
NL 2013-04-01 6102 1.231 19 Netherlands
NL 2012-11-12 981 0.764 23 Netherlands
NL 2012-11-19 1871 1.186 16 Netherlands
NL 2013-01-21 3565 1.247 20 Netherlands
NL 2012-11-26 2886 1.636 19 Netherlands
NL 2012-12-03 2081 1.218 14 Netherlands
NL 2012-10-29 299 0.467 20 Netherlands
NL 2012-10-01 1 0.257 5 Netherlands
NL 2013-03-11 7514 1.564 12 Netherlands
NL 2012-12-17 2304 1.3 13 Netherlands
NL 2013-04-22 16517 3.461 6 Netherlands
NL 2013-01-14 6389 2.523 7 Netherlands
NL 2013-03-18 6442 1.866 19 Netherlands
NL 2012-12-24 1018 0.725 16 Netherlands
NL 2013-05-27 7230 1.625 14 Netherlands
NL 2013-05-13 9469 2.638 10 Netherlands
NL 2012-12-31 1529 1.088 14 Netherlands
NL 2013-04-29 8996 2.73 12 Netherlands
US 2012-12-10 56167 28.31 1 United States
US 2012-12-24 58822 41.864 1 United States
US 2013-04-08 126639 31.397 1 United States
US 2013-01-14 115659 45.669 1 United States
US 2013-04-29 106352 32.276 1 United States
US 2013-02-04 114094 40.685 1 United States
US 2012-11-12 42009 32.724 1 United States
US 2012-12-03 47639 27.875 1 United States
US 2013-05-20 111155 24.353 1 United States
US 2013-01-21 99572 34.841 1 United States
US 2013-06-10 155630 33.743 1 United States
US 2012-11-19 22905 14.517 2 United States
US 2012-11-26 44590 25.269 1 United States
US 2013-03-11 122825 25.568 1 United States
US 2013-03-18 88039 25.5 1 United States
US 2013-05-06 109520 32.197 1 United States
US 2013-04-01 185130 37.354 1 United States
US 2013-02-18 105583 32.846 1 United States
US 2012-10-01 364 93.573 1 United States
US 2013-05-13 95210 26.524 1 United States
US 2013-01-28 98327 32.221 1 United States
US 2012-12-17 78767 44.46 1 United States
US 2012-11-05 27813 29.769 1 United States
US 2012-12-31 40937 29.126 1 United States
US 2013-02-25 135868 33.893 1 United States
US 2012-10-29 32054 50.049 1 United States
US 2013-04-22 182615 38.269 1 United States
US 2013-03-25 83587 32.174 1 United States
US 2013-02-11 122608 37.026 1 United States
US 2013-04-15 126607 30.683 1 United States
US 2013-03-04 126299 33.154 1 United States
US 2013-06-03 129453 30.127 1 United States
US 2013-01-07 88011 36.238 1 United States
US 2013-05-27 149170 33.527 1 United States
week package tot rank pc
2013-01-21 digest 6416 1 2.245
2013-01-21 stringr 3517 3 1.231
2013-01-21 plyr 3344 4 1.17
2013-01-21 ggplot2 2987 5 1.045
2013-01-21 colorspace 2944 6 1.03
2013-01-21 RColorBrewer 2734 7 0.957
2013-01-21 reshape2 2442 9 0.854
2013-01-21 proto 2243 11 0.785
2013-01-21 scales 2175 12 0.761
2013-01-21 shiny 437 99 0.153
2013-04-22 colorspace 5610 1 1.176
2013-04-22 ggplot2 5251 2 1.1
2013-04-22 plyr 5234 3 1.097
2013-04-22 stringr 4677 4 0.98
2013-04-22 digest 4549 5 0.953
2013-04-22 RColorBrewer 4358 6 0.913
2013-04-22 reshape2 4113 7 0.862
2013-04-22 proto 3736 8 0.783
2013-04-22 scales 3689 9 0.773
2013-04-22 shiny 550 139 0.115
2013-06-10 plyr 5373 1 1.165
2013-06-10 ggplot2 5291 2 1.147
2013-06-10 colorspace 5102 3 1.106
2013-06-10 stringr 4880 4 1.058
2013-06-10 digest 4758 5 1.032
2013-06-10 RColorBrewer 4376 6 0.949
2013-06-10 reshape2 4330 7 0.939
2013-06-10 scales 3976 8 0.862
2013-06-10 proto 3902 9 0.846
2013-06-10 shiny 1018 70 0.221
2013-04-15 colorspace 4963 1 1.203
2013-04-15 plyr 4447 2 1.078
2013-04-15 ggplot2 4281 3 1.037
2013-04-15 stringr 3931 4 0.953
2013-04-15 digest 3919 5 0.95
2013-04-15 RColorBrewer 3546 6 0.859
2013-04-15 reshape2 3445 7 0.835
2013-04-15 proto 3125 9 0.757
2013-04-15 scales 3035 10 0.736
2013-04-15 shiny 523 116 0.127
2013-05-20 plyr 4757 1 1.042
2013-05-20 colorspace 4577 2 1.003
2013-05-20 ggplot2 4391 3 0.962
2013-05-20 stringr 4159 4 0.911
2013-05-20 digest 3968 5 0.869
2013-05-20 RColorBrewer 3822 6 0.837
2013-05-20 reshape2 3704 7 0.811
2013-05-20 scales 3355 9 0.735
2013-05-20 proto 3235 10 0.709
2013-05-20 shiny 649 102 0.142
2013-03-04 ggplot2 4745 1 1.246
2013-03-04 digest 4161 2 1.092
2013-03-04 plyr 4083 3 1.072
2013-03-04 stringr 3941 4 1.035
2013-03-04 colorspace 3881 5 1.019
2013-03-04 reshape2 3096 9 0.813
2013-03-04 RColorBrewer 3038 10 0.797
2013-03-04 proto 2687 12 0.705
2013-03-04 scales 2622 14 0.688
2013-03-04 shiny 500 123 0.131
2013-05-13 plyr 4579 1 1.276
2013-05-13 ggplot2 4389 2 1.223
2013-05-13 colorspace 4361 3 1.215
2013-05-13 digest 3748 4 1.044
2013-05-13 stringr 3734 5 1.04
2013-05-13 reshape2 3660 6 1.02
2013-05-13 RColorBrewer 3491 7 0.973
2013-05-13 scales 3284 8 0.915
2013-05-13 proto 3125 10 0.871
2013-05-13 shiny 719 83 0.2
2013-04-08 colorspace 4522 1 1.121
2013-04-08 plyr 4467 2 1.107
2013-04-08 ggplot2 4239 3 1.051
2013-04-08 digest 4048 4 1.004
2013-04-08 stringr 3915 5 0.971
2013-04-08 RColorBrewer 3633 6 0.901
2013-04-08 reshape2 3317 7 0.822
2013-04-08 proto 3077 10 0.763
2013-04-08 scales 3049 11 0.756
2013-04-08 shiny 617 107 0.153
2013-04-01 ggplot2 4495 1 0.907
2013-04-01 plyr 4166 2 0.841
2013-04-01 stringr 4079 3 0.823
2013-04-01 digest 4071 4 0.821
2013-04-01 colorspace 3964 5 0.8
2013-04-01 RColorBrewer 3370 6 0.68
2013-04-01 reshape2 3265 7 0.659
2013-04-01 proto 2977 9 0.601
2013-04-01 scales 2953 10 0.596
2013-04-01 shiny 733 89 0.148
2013-05-06 ggplot2 4358 1 1.281
2013-05-06 colorspace 4161 2 1.223
2013-05-06 plyr 4125 3 1.213
2013-05-06 stringr 3685 4 1.083
2013-05-06 digest 3622 5 1.065
2013-05-06 RColorBrewer 3382 6 0.994
2013-05-06 reshape2 3371 7 0.991
2013-05-06 scales 3118 9 0.917
2013-05-06 proto 3058 10 0.899
2013-05-06 shiny 560 103 0.165
2013-05-27 ggplot2 4308 1 0.968
2013-05-27 plyr 4237 2 0.952
2013-05-27 colorspace 4227 3 0.95
2013-05-27 digest 3802 4 0.855
2013-05-27 stringr 3762 5 0.846
2013-05-27 RColorBrewer 3566 6 0.801
2013-05-27 reshape2 3545 7 0.797
2013-05-27 scales 3251 8 0.731
2013-05-27 proto 3088 9 0.694
2013-05-27 shiny 682 93 0.153
2013-01-28 digest 4303 1 1.41
2013-01-28 stringr 3656 2 1.198
2013-01-28 colorspace 3466 3 1.136
2013-01-28 plyr 3374 4 1.106
2013-01-28 ggplot2 2964 5 0.971
2013-01-28 reshape2 2692 7 0.882
2013-01-28 RColorBrewer 2665 8 0.873
2013-01-28 proto 2283 11 0.748
2013-01-28 scales 2191 14 0.718
2013-01-28 shiny 420 109 0.138
2013-06-03 plyr 4176 1 0.972
2013-06-03 colorspace 4089 2 0.952
2013-06-03 ggplot2 4058 3 0.944
2013-06-03 stringr 3840 4 0.894
2013-06-03 digest 3738 5 0.87
2013-06-03 RColorBrewer 3454 6 0.804
2013-06-03 reshape2 3290 7 0.766
2013-06-03 proto 3077 9 0.716
2013-06-03 scales 3043 10 0.708
2013-06-03 shiny 801 73 0.186
2013-02-25 colorspace 4158 1 1.037
2013-02-25 digest 4136 2 1.032
2013-02-25 plyr 4085 3 1.019
2013-02-25 ggplot2 3909 4 0.975
2013-02-25 stringr 3591 5 0.896
2013-02-25 RColorBrewer 3183 9 0.794
2013-02-25 reshape2 3094 10 0.772
2013-02-25 proto 2864 11 0.714
2013-02-25 scales 2784 14 0.694
2013-02-25 shiny 620 95 0.155
2013-04-29 ggplot2 4138 1 1.256
2013-04-29 colorspace 4042 2 1.227
2013-04-29 plyr 4037 3 1.225
2013-04-29 RColorBrewer 3408 4 1.034
2013-04-29 digest 3398 5 1.031
2013-04-29 stringr 3393 6 1.03
2013-04-29 reshape2 3046 7 0.924
2013-04-29 scales 2836 9 0.861
2013-04-29 proto 2813 10 0.854
2013-04-29 shiny 477 122 0.145
2013-02-18 digest 4101 1 1.276
2013-02-18 colorspace 3423 2 1.065
2013-02-18 plyr 3365 3 1.047
2013-02-18 stringr 3258 4 1.014
2013-02-18 ggplot2 3242 5 1.009
2013-02-18 RColorBrewer 2846 7 0.885
2013-02-18 reshape2 2658 11 0.827
2013-02-18 proto 2542 12 0.791
2013-02-18 scales 2445 14 0.761
2013-02-18 shiny 464 104 0.144
2013-03-11 ggplot2 4057 1 0.845
2013-03-11 plyr 4013 2 0.835
2013-03-11 colorspace 3744 3 0.779
2013-03-11 digest 3578 4 0.745
2013-03-11 stringr 3439 5 0.716
2013-03-11 RColorBrewer 2921 7 0.608
2013-03-11 reshape2 2807 8 0.584
2013-03-11 proto 2560 10 0.533
2013-03-11 scales 2527 11 0.526
2013-03-11 shiny 448 138 0.093
2013-02-04 digest 3765 2 1.343
2013-02-04 stringr 3668 3 1.308
2013-02-04 colorspace 3644 4 1.299
2013-02-04 plyr 3526 5 1.257
2013-02-04 ggplot2 3332 6 1.188
2013-02-04 RColorBrewer 2898 7 1.033
2013-02-04 reshape2 2738 8 0.976
2013-02-04 proto 2566 11 0.915
2013-02-04 scales 2515 12 0.897
2013-02-04 shiny 356 115 0.127
2013-03-18 ggplot2 3797 1 1.1
2013-03-18 plyr 3650 2 1.057
2013-03-18 colorspace 3417 3 0.99
2013-03-18 digest 3334 4 0.966
2013-03-18 stringr 3256 5 0.943
2013-03-18 RColorBrewer 2875 7 0.833
2013-03-18 reshape2 2731 9 0.791
2013-03-18 proto 2493 12 0.722
2013-03-18 scales 2460 13 0.713
2013-03-18 shiny 461 114 0.134
2013-01-14 digest 3670 1 1.449
2013-01-14 plyr 3330 2 1.315
2013-01-14 stringr 3214 3 1.269
2013-01-14 ggplot2 2998 4 1.184
2013-01-14 colorspace 2456 6 0.97
2013-01-14 reshape2 2267 7 0.895
2013-01-14 RColorBrewer 2123 11 0.838
2013-01-14 proto 2067 12 0.816
2013-01-14 scales 1923 16 0.759
2013-01-14 shiny 222 171 0.088
2013-02-11 digest 3633 1 1.097
2013-02-11 stringr 3509 2 1.06
2013-02-11 plyr 3443 3 1.04
2013-02-11 colorspace 3410 4 1.03
2013-02-11 ggplot2 3330 5 1.006
2013-02-11 RColorBrewer 3129 6 0.945
2013-02-11 reshape2 2690 7 0.812
2013-02-11 proto 2621 9 0.792
2013-02-11 scales 2510 11 0.758
2013-02-11 shiny 381 126 0.115
2013-03-25 ggplot2 3160 1 1.216
2013-03-25 plyr 2951 2 1.136
2013-03-25 digest 2872 3 1.105
2013-03-25 colorspace 2866 4 1.103
2013-03-25 stringr 2809 5 1.081
2013-03-25 RColorBrewer 2389 8 0.92
2013-03-25 reshape2 2336 9 0.899
2013-03-25 proto 2157 11 0.83
2013-03-25 scales 2124 12 0.818
2013-03-25 shiny 456 99 0.176
2013-01-07 plyr 2732 1 1.125
2013-01-07 stringr 2590 2 1.066
2013-01-07 ggplot2 2496 3 1.028
2013-01-07 digest 2407 4 0.991
2013-01-07 colorspace 2316 5 0.954
2013-01-07 reshape2 2199 6 0.905
2013-01-07 proto 2074 7 0.854
2013-01-07 scales 1977 8 0.814
2013-01-07 RColorBrewer 1928 9 0.794
2013-01-07 shiny 253 134 0.104
2012-12-03 plyr 2389 1 1.398
2012-12-03 ggplot2 2034 2 1.19
2012-12-03 stringr 1922 3 1.125
2012-12-03 colorspace 1820 4 1.065
2012-12-03 digest 1799 5 1.053
2012-12-03 scales 1720 6 1.006
2012-12-03 reshape2 1647 7 0.964
2012-12-03 RColorBrewer 1565 8 0.916
2012-12-03 proto 1310 11 0.767
2012-12-03 shiny 178 146 0.104
2012-12-10 plyr 2206 1 1.112
2012-12-10 ggplot2 1896 2 0.956
2012-12-10 stringr 1787 3 0.901
2012-12-10 colorspace 1634 4 0.824
2012-12-10 digest 1612 5 0.813
2012-12-10 scales 1571 6 0.792
2012-12-10 reshape2 1505 8 0.759
2012-12-10 RColorBrewer 1430 10 0.721
2012-12-10 proto 1188 12 0.599
2012-12-10 shiny 113 251 0.057
2012-11-26 plyr 1944 1 1.102
2012-11-26 digest 1799 2 1.02
2012-11-26 colorspace 1783 3 1.01
2012-11-26 ggplot2 1653 4 0.937
2012-11-26 stringr 1545 6 0.876
2012-11-26 RColorBrewer 1471 7 0.834
2012-11-26 reshape2 1329 8 0.753
2012-11-26 scales 1305 9 0.74
2012-11-26 proto 1253 10 0.71
2012-11-26 shiny 4 4139 0.002
2012-12-17 plyr 1907 1 1.076
2012-12-17 stringr 1584 2 0.894
2012-12-17 ggplot2 1570 3 0.886
2012-12-17 colorspace 1483 4 0.837
2012-12-17 digest 1408 5 0.795
2012-12-17 reshape2 1312 6 0.741
2012-12-17 scales 1279 8 0.722
2012-12-17 RColorBrewer 1275 9 0.72
2012-12-17 proto 1095 12 0.618
2012-12-17 shiny 195 128 0.11
2012-11-19 plyr 1468 1 0.93
2012-11-19 colorspace 1339 2 0.849
2012-11-19 stringr 1265 3 0.802
2012-11-19 ggplot2 1205 4 0.764
2012-11-19 RColorBrewer 1201 5 0.761
2012-11-19 digest 1155 7 0.732
2012-11-19 reshape2 1041 8 0.66
2012-11-19 scales 974 10 0.617
2012-11-19 proto 948 11 0.601
2012-11-12 plyr 1463 1 1.14
2012-11-12 colorspace 1307 2 1.018
2012-11-12 stringr 1249 3 0.973
2012-11-12 digest 1199 4 0.934
2012-11-12 ggplot2 1136 6 0.885
2012-11-12 RColorBrewer 1119 7 0.872
2012-11-12 reshape2 999 8 0.778
2012-11-12 scales 965 9 0.752
2012-11-12 proto 932 10 0.726
2012-12-31 plyr 1390 1 0.989
2012-12-31 stringr 1268 2 0.902
2012-12-31 ggplot2 1229 3 0.874
2012-12-31 colorspace 1185 4 0.843
2012-12-31 digest 1162 5 0.827
2012-12-31 proto 1141 6 0.812
2012-12-31 reshape2 1125 7 0.8
2012-12-31 scales 1002 9 0.713
2012-12-31 RColorBrewer 994 10 0.707
2012-12-31 shiny 164 124 0.117
2012-11-05 plyr 1233 1 1.32
2012-11-05 colorspace 1173 2 1.256
2012-11-05 stringr 1071 4 1.146
2012-11-05 ggplot2 1021 5 1.093
2012-11-05 RColorBrewer 1018 6 1.09
2012-11-05 digest 1005 7 1.076
2012-11-05 proto 838 9 0.897
2012-11-05 reshape2 826 10 0.884
2012-11-05 scales 820 11 0.878
2012-12-24 plyr 1058 1 0.753
2012-12-24 stringr 1010 2 0.719
2012-12-24 proto 963 3 0.685
2012-12-24 colorspace 913 4 0.65
2012-12-24 digest 886 5 0.631
2012-12-24 ggplot2 885 6 0.63
2012-12-24 reshape2 883 7 0.628
2012-12-24 scales 742 9 0.528
2012-12-24 RColorBrewer 734 10 0.522
2012-12-24 shiny 168 96 0.12
2012-10-29 plyr 409 1 0.639
2012-10-29 colorspace 391 2 0.611
2012-10-29 stringr 350 4 0.546
2012-10-29 RColorBrewer 320 5 0.5
2012-10-29 ggplot2 315 6 0.492
2012-10-29 digest 311 7 0.486
2012-10-29 reshape2 271 9 0.423
2012-10-29 proto 262 11 0.409
2012-10-29 scales 250 14 0.39
2012-10-01 scales 6 8 1.542
2012-10-01 stringr 3 11 0.771
2012-10-01 digest 2 18 0.514
2012-10-01 plyr 2 27 0.514
# required libraries from CRAN other than
#library(devtools)
#install_github('rCharts', 'ramnathv')
library(shiny)
library(stringr)
library(plyr)
library(countrycode)
library(lubridate)
library(rCharts)
library(googleVis)
# The data is based on subsets of packages and countries information from Nov 2012-mid June 2013
# Ten popular packages
# All data to mid June 2013 is available at https://docs.google.com/file/d/0B6RvWdmokNZySENGTV85c0k2T3c/edit
dfPW <-read.csv("dfPW.csv", stringsAsFactors=FALSE)
# get rid of early weeks as were open to RStudio only
dfPW <-dfPW[dfPW$week>"2012-10-29",]
# confirm in date order and create most recent week
dfPW <- dfPW[order(as.Date(dfPW$week, format="%Y-%m-%d")),]
lastDate <-tail(dfPW$week,1)[1] #str(lastDate) is now week commencing
if (wday(lastDate)!=2) {
dfPW <- dfPW[dfPW$week!=lastDate,]
}
lastDate <-tail(dfPW$week,1)[1]
# create selectInput (5,000+ in reality)
packageChoice <- sort(unique(dfPW$package)) #5333
# getting latest top 100 packages (only relevant in production)
lastWeek <-as.Date(as.character(tail(dfPW$week),1))[1]
lwPW <- dfPW[as.Date(dfPW$week)==lastWeek,]
topPackageChoice <- sort(head(arrange(lwPW,desc(tot)),100)$package) #str(lwPW)
## similar procedure for top country info
dfCW <-read.csv("dfCW.csv", stringsAsFactors=FALSE)
#dfCW <-read.csv("https://docs.google.com/file/d/0B6RvWdmokNZyQVR0VEdYNk5JRnc/edit", stringsAsFactors=FALSE)
#https://docs.google.com/file/d/0B6RvWdmokNZyQVR0VEdYNk5JRnc/edit
#get rid of early data
dfCW <-dfCW[dfCW$week>"2012-10-29",]
countryChoice <- sort(unique(dfCW$country.name))
lwCW <- dfCW[as.Date(dfCW$week)==lastWeek,] #4825 (would have been downloaded in last full week)
topCountryChoice <- sort(head(arrange(lwCW,desc(tot)),25)$country.name) #str(lwCW)
# pre-compiled (for speed reasons) package records
mostDown <-read.csv("mostDown.csv", stringsAsFactors=FALSE)
bestRank <-read.csv("bestRank.csv", stringsAsFactors=FALSE)
package mostDownloads bestRank week tot rank
shiny 1018 70 2013-06-10 1018 70
RColorBrewer 4376 4 2013-06-10 4376 6
scales 3976 6 2013-06-10 3976 8
reshape2 4330 6 2013-06-10 4330 7
proto 3902 3 2013-06-10 3902 9
ggplot2 5291 1 2013-06-10 5291 2
digest 6416 1 2013-01-21 6416 1
colorspace 5610 1 2013-04-22 5610 1
stringr 4880 2 2013-06-10 4880 4
plyr 5373 1 2013-06-10 5373 1
shinyServer(function(input, output) {
# create some conditional uiOutputs
output$selection <- renderUI( {
print("input$choice")
print(input$choice)
if (input$choice=="All") {
selectInput("packages", "Select Package(s)",packageChoice,
selected=c("ggplot2","lattice","shiny"),
multiple=TRUE)
} else {
selectInput("packages", "Select Package(s) max 10",topPackageChoice,
selected=c("ggplot2","lattice","shiny"),
multiple=TRUE)
}
})
output$countrySelection <- renderUI( {
if (input$countryChoice=="All") {
selectInput("countries", "Select Country(s)",countryChoice,
selected=c("United States","Germany","Japan"),
multiple=TRUE)
} else {
selectInput("countries", "Select Country(s) max 10",topCountryChoice,
selected=c("United States","Germany","Japan"),
multiple=TRUE)
}
})
# country chart
output$cChart <- renderChart({
# subset to chosen countries
countries <- input$countries
if (countries >10) countries <- countries[1:10]
ct <- subset(dfCW,country.name %in% countries)
# set variables based on input
if (input$cChoice=="Total") {
ytitle<-"Downloads per week"
yData <- ct$tot
}
if (input$cChoice=="Rank") {
ytitle<-"Rank by week"
yData <- ct$rank
}
if (input$cChoice=="Share") {
ytitle<-"% Share of All Downloads"
yData <- ct$pc
}
# create data.frame for outputs. name is the tooltip
ctTable <- data.frame(x=as.double(as.Date(ct$week))*24*3600*1000,
y=yData,
name=sprintf("<table cellpadding='4' style='line-height:1.5'><tr><th>%1$s</th></tr><tr><td align='left'>Week: %2$s<br>Downloads: %3$s<br>Percent: %4$s<br>Rank: %5$s</td></tr></table>",
ct$country.name,
ct$week,
prettyNum(ct$tot, big.mark = ","),
prettyNum(ct$pc, big.mark = ","),
prettyNum(ct$rank, big.mark = ",") # add rank
),
country=ct$country.name
)
# create list required for Highchart
ctSeries <- lapply(split(ctTable, ctTable$country), function(x) {
res <- lapply(split(x, rownames(x)), as.list)
names(res) <- NULL
res <- res[order(sapply(res, function(x) x$x))] # necessary to get dates in order for line graph
return(res)
})
# create chart and customize
a <- rCharts::Highcharts$new()
invisible(sapply(ctSeries, function(x) {
a$series(data = x, type = "line", name = x[[1]]$country)
}
))
a$chart(zoomType="xy")
a$title(text="Weekly Downloads from RStudio's CRAN mirror")
a$subtitle(text="Rollover for More Info. Zoom for closer look")
if (input$cChoice=="Total") a$yAxis(title=list(text=ytitle), min= -50, allowDecimals = FALSE, startOnTick = FALSE)
if (input$cChoice=="Share") a$yAxis(title=list(text=ytitle), min= -0, startOnTick = FALSE)
if (input$cChoice=="Rank") a$yAxis(title=list(text=ytitle), reversed = TRUE, allowDecimals = FALSE, min= -5, startOnTick = FALSE)
a$xAxis(title = list(text = "Week Commencing"), type = "datetime")
a$tooltip(useHTML = T, formatter = "#! function() { return this.point.name; } !#")
# send to main page
a$set(dom = 'cChart')
return(a)
})
# package chart similar procedure to country but with url link
output$pChart <- renderChart({
if (is.null(input$packages)) return() #still prints an error momentarily
packs <- input$packages
if (packs >10) packs <- packs[1:10]
pk <- subset(dfPW,package %in% packs)
if (input$pChoice=="Total") {
ytitle<-"Downloads per week"
yData <- pk$tot
}
if (input$pChoice=="Rank") {
ytitle<-"Rank by week"
yData <- pk$rank
}
if (input$pChoice=="Share") {
ytitle<-"% Share of All Downloads"
yData <- pk$pc
}
# alternative approach for date calculation seem equicvalent
pkTable <- data.frame(x=as.numeric(as.POSIXct(pk$week, origin="1970-01-01")) * 1000,
y=yData,
name=sprintf("<table cellpadding='4' style='line-height:1.5'><tr><th>%1$s</th></tr><tr><td align='left'>Week: %2$s<br>Downloads: %3$s<br>Percent: %4$s<br>Rank: %5$s</td></tr></table>",
pk$package,
pk$week,
prettyNum(pk$tot, big.mark = ","),
prettyNum(pk$pc, big.mark = ","),
prettyNum(pk$rank, big.mark = ",")
),
package=pk$package,
url = paste0("http://cran.r-project.org/web/packages/", pk$package,"/", pk$package,".pdf")
)
pkSeries <- lapply(split(pkTable, pkTable$package), function(x) {
res <- lapply(split(x, rownames(x)), as.list)
names(res) <- NULL
res <- res[order(sapply(res, function(x) x$x))]
return(res)
})
a <- rCharts::Highcharts$new()
invisible(sapply(pkSeries, function(x) {
a$series(data = x, type = "line", name = x[[1]]$package)
}
))
a$chart(zoomType="xy")
a$title(text="Weekly Downloads from RStudio's CRAN mirror")
a$subtitle(text="Rollover for More Info. Click for Package pdf. Zoom for closer look")
if (input$pChoice=="Total") a$yAxis(title=list(text=ytitle), min= -50, allowDecimals = FALSE, startOnTick = FALSE)
if (input$pChoice=="Share") a$yAxis(title=list(text=ytitle), min= -0, startOnTick = FALSE)
if (input$pChoice=="Rank") a$yAxis(title=list(text=ytitle), reversed = TRUE, allowDecimals = FALSE, min= -5, startOnTick = FALSE)
a$xAxis(title = list(text = "Week Commencing"), type = "datetime")
a$plotOptions(
line = list(
cursor = "pointer",
point = list(
events = list(
click = "#! function() { window.open(this.options.url); } !#")),
marker = list(
symbol = "circle",
radius = 5
)
)
)
a$tooltip(useHTML = T, formatter = "#! function() { return this.point.name; } !#") # only shows date
a$set(dom = 'pChart')
return(a)
})
output$topTenPackages <- renderTable({
topTen <- subset(dfPW,week==input$date)
topTen <- data.frame(head(arrange(topTen,rank),10))
topTen <- topTen[,c(2,3,5)]
topTen[3] <- round(topTen[3],2)
names(topTen) <- c("Package","Downloads","%")
topTen
})
output$topTenCountries <- renderTable({
topTen <- subset(dfCW,week==input$date)
topTen <- data.frame(head(arrange(topTen,desc(pc)),10))
topTen <- topTen[,c(6,3,4)]
topTen[3] <- round(topTen[3],2)
topTen[2] <- prettyNum( topTen[2], big.mark = ",")
names(topTen) <- c("Country","Downloads","%")
topTen
})
output$topTenText <- renderText({
month <- month(input$date,label = TRUE, abbr=TRUE)
day <- day(input$date)
year <- year(input$date)
paste(" Top 10 week commencing ",month,day,year, sep=" " )
})
# best week ranking
output$Ranking <- renderGvis({
# Restrict to current week
# print("input$date2")
# print(input$date2)
# dfPW.best <- dfPW.best[dfPW.best$week==input$date2,]
# bestRank <- dfPW.best[dfPW.best$bestRank==dfPW.best$rank,]
bestRank <- bestRank[bestRank$week==input$date2,]
# bestRank <- bestRank[order(bestRank),]
bestRank <- arrange(bestRank,bestRank)
bestRank <- data.frame(bestRank) # necessary
bestRank <- bestRank[,c(1,3,5)]
names(bestRank) <- c("Package","Rank","Downloads")
gvisTable(bestRank, options=myOptions())
})
output$Downloads <- renderGvis({
# Restrict to current week
# dfPW.best <- dfPW.best[dfPW.best$week==input$date2,]
# mostDown <- dfPW.best[dfPW.best$mostDownloads==dfPW.best$tot,] #still 131
mostDown <- mostDown[ mostDown$week==input$date2,]
# mostDown <- mostDown[order(-mostDownloads),]
mostDown <- arrange(mostDown,desc(mostDownloads))
mostDown <- data.frame(mostDown) # necessary
mostDown <- mostDown[,c(1,2,6)]
names(mostDown) <- c("Package","Downloads","Rank")
gvisTable(mostDown, options=myOptions2())
})
myOptions <- reactive({
list(
page='enable',
pageSize=15,
#height = 450, introduces a width scrollbar
width = 300
)
})
myOptions2 <- reactive({ #function() removed as deprecated
list(
page='enable',
pageSize=15,
width = 300
)
})
output$RankText <- renderText({
"Packages having best Ranking chosen Week"
})
output$DownloadText <- renderText({
"Packages having record Downloads chosen Week"
})
# processing so viewed immediately when tabbed. However does slow initial chart plot
outputOptions(output, "topTenPackages", suspendWhenHidden = FALSE)
outputOptions(output, "topTenCountries", suspendWhenHidden = FALSE)
})
/* NB THIS WILL NOT LINK DUE TO PATH ISSUES BUT SHOWS HOW TO GET TO FINAL APP LOOK */
/* change link colors and dont underline tried a in general applied also to tabs*/
a#link {
color: #cc0000;
text-decoration: none;
}
a#link:hover {
font-weight: bold;
}
li.active a{
color: #cc0000;
font-weight: bold;
}
a {
color: #cc0000;
text-decoration: none;
}
a:hover {
font-weight: bold;
color: #cc0000;
text-decoration: none;
}
label.radio {
display: inline-block;
margin: 0 10 0 0; /* Invalid property value when looking in browser*/
}
/************* app specific *****************/
/* selectInput */
#packages {
height:350px /*was auto */
}
#countries {
height:350px /*was auto */
}
shinyUI(pageWithSidebar(
# Application title. Leave blank to create more space
headerPanel(""),
sidebarPanel(
tags$head(
tags$link(rel = 'stylesheet', type = 'text/css', href = 'styles.css')),
helpText(h5
(p("Check out CRAN downloads from RStudio logs"),p("Interactive Graphs for packages and countries")
,p("Weekly Top Ten Charts and Best Results, past and present"))),
wellPanel(
conditionalPanel(
condition = "input.tabs1 == 1",
radioButtons(inputId="choice", label="Packages - Click and hold for Multiple Selections",choices=c("Top 100","All")),
uiOutput("selection")
),
conditionalPanel(
condition = "input.tabs1 == 2",
radioButtons(inputId="countryChoice", label="Countries- Click and hold for Multiple Selections",choices=c("Top 25","All")),
uiOutput("countrySelection")
),
conditionalPanel(
condition = "input.tabs1 == 3",
dateInput("date", "Week Commencing - Select any available Monday", value = lastWeek, min="2012-11-05",max=lastWeek)
),
conditionalPanel(
condition = "input.tabs1 == 4",
dateInput("date2", "Week Commencing - Select any available Monday", value = lastWeek, min="2012-11-05",max=lastWeek)
)
)
),
mainPanel(
tabsetPanel(
tabPanel("Package",
showOutput("pChart","highcharts"),
radioButtons(inputId="pChoice", label="Downloads",choices=c("Total","Share","Rank")),
value = 1),
tabPanel("Country",
showOutput("cChart","highcharts"),
radioButtons(inputId="cChoice", label="Downloads",choices=c("Total","Share","Rank")),
value = 2),
tabPanel("Top Tens",
h5(textOutput("topTenText")),
div(class="row"),
div(class="span5",tableOutput("topTenPackages")),
div(class="span5",tableOutput("topTenCountries")),
value=3),
tabPanel("Records",
div(class="row"),
div(class="span5",h5(textOutput("RankText"))),
div(class="span5",h5(textOutput("DownloadText"))),
div(class="row"),
div(class="span5",htmlOutput("Ranking")),
div(class="span5",htmlOutput("Downloads")),
value=4),
tabPanel("Notes",
HTML("Data is based on daily logs from RStudio's CRAN mirror and commences from the first full week in early November 2012. The growth in
volume will be impacted by increased RStudio usage and may not reflect total CRAN activity<br><br>
Some packages will be downloaded as dependencies<br><br>
There are strange weekly variatons which I have yet to investigate<br><br>
The charts are based on the Highcharts javascript library which is free for non-commercial uses<br><br>
The R package rCharts which enables access to Highcharts amongst many similar JS libraries is being developed by Ramnath Vaidyanathan and
Thomas Reinholdsson. They have both provided invaluable assistance in creating this app.
"),
value = 5),
id="tabs1")
)
))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment