Skip to content

Instantly share code, notes, and snippets.

@psycharo-zz
Last active January 29, 2020 02:04
Show Gist options
  • Save psycharo-zz/60f58d5435281bdea8b9d4ee4f6e895b to your computer and use it in GitHub Desktop.
Save psycharo-zz/60f58d5435281bdea8b9d4ee4f6e895b to your computer and use it in GitHub Desktop.
def mmul(*tensors):
return tf.foldl(tf.matmul, tensors)
def msym(X):
return (X + tf.matrix_transpose(X)) / 2
def mdiag(X):
return tf.matrix_diag(tf.matrix_diag_part(X))
@tf.RegisterGradient('Svd')
def gradient_svd(op, dL_ds, dL_dU, dL_dV):
s, U, V = op.outputs
# NOTE: based on https://arxiv.org/pdf/1509.07838.pdf
# this version works for square matrices only
# in practice it means that only U_1 part of (17) is used
assert U.shape == V.shape, U.shape[1] == U.shape[2]
I = tf.eye(tf.shape(s)[1])
S = tf.matrix_diag(s)
dL_dS = tf.matrix_diag(dL_ds)
V_T = tf.matrix_transpose(V)
U_T = tf.matrix_transpose(U)
s_2 = tf.square(s)
K = 1.0 / (s_2[:,tf.newaxis,:] - s_2[:,:,tf.newaxis] + I) - I
D = mmul(dL_dU, tf.matrix_diag(1.0 / s))
D_T = tf.matrix_transpose(D)
return (mmul(D, V_T) +
mmul(U, mdiag(dL_dS - mmul(U_T, D)), V_T) +
2 * mmul(U, S, msym(K * mmul(V_T, dL_dV - mmul(V, D_T, U, S))), V_T))
@JaeDukSeo
Copy link

Oh oh nvm you set the n to be m - hence the second part of block decomposition never gets to be considered gotcha

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment