Skip to content

Instantly share code, notes, and snippets.

View ptigas's full-sized avatar
🐙

Panagiotis Tigas ptigas

🐙
View GitHub Profile
@barosl
barosl / add.c
Created July 26, 2015 07:26
Function overloading in C
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int addi(int a, int b) {
return a + b;
}
char *adds(char *a, char *b) {
char *res = malloc(strlen(a) + strlen(b) + 1);
@karpathy
karpathy / min-char-rnn.py
Last active May 8, 2025 09:24
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
@FrancesCoronel
FrancesCoronel / sampleREADME.md
Last active February 10, 2025 02:48
A sample README for all your GitHub projects.

Repository Title Goes Here

Frances Coronel

INSERT GRAPHIC HERE (include hyperlink in image)

Subtitle or Short Description Goes Here

ideally one sentence >

@karpathy
karpathy / pg-pong.py
Created May 30, 2016 22:50
Training a Neural Network ATARI Pong agent with Policy Gradients from raw pixels
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """
import numpy as np
import cPickle as pickle
import gym
# hyperparameters
H = 200 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
gamma = 0.99 # discount factor for reward
@njbbaer
njbbaer / ca.py
Last active October 27, 2022 18:05
Fast implementation of cellular automata using 2D convolution
import time
import numpy as np
from numpy.fft import fft2, ifft2
from matplotlib import pyplot, animation
def fft_convolve2d(board, kernal):
board_ft = fft2(board)
kernal_ft = fft2(kernal)
height, width = board_ft.shape
def sample_gumbel(shape, eps=1e-20):
"""Sample from Gumbel(0, 1)"""
U = tf.random_uniform(shape,minval=0,maxval=1)
return -tf.log(-tf.log(U + eps) + eps)
def gumbel_softmax_sample(logits, temperature):
""" Draw a sample from the Gumbel-Softmax distribution"""
y = logits + sample_gumbel(tf.shape(logits))
return tf.nn.softmax( y / temperature)
@gluschenko
gluschenko / IK.cs
Created January 7, 2017 20:58
Inverse kinematics, Unity3D
using UnityEngine;
using System.Collections;
public class IK : MonoBehaviour {
public Vector3 Target = new Vector3(-8, 0, 0);
public Vector3 BendTarget = new Vector3(-4, 0, 3);
public float Transition = 1f;
public GameObject[] Members = new GameObject[3];
@victor-shepardson
victor-shepardson / pytorch-glumpy.py
Last active February 23, 2025 17:12
using pycuda and glumpy to draw pytorch GPU tensors to the screen without copying to host memory
from contextlib import contextmanager
import numpy as np
import torch
from torch import Tensor, ByteTensor
import torch.nn.functional as F
from torch.autograd import Variable
import pycuda.driver
from pycuda.gl import graphics_map_flags
from glumpy import app, gloo, gl
@abridgland
abridgland / gaussian-processes-1.ipynb
Last active February 19, 2025 00:55
A Jupyter notebook to accompany Intro to Gaussian Processes - Part I at http://bridg.land/posts/gaussian-processes-1
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@atabakd
atabakd / kl.py
Last active March 27, 2025 14:23
KL divergence for multivariate samples
# https://mail.python.org/pipermail/scipy-user/2011-May/029521.html
import numpy as np
def KLdivergence(x, y):
"""Compute the Kullback-Leibler divergence between two multivariate samples.
Parameters
----------
x : 2D array (n,d)