INSERT GRAPHIC HERE (include hyperlink in image)
Subtitle or Short Description Goes Here
ideally one sentence >
#include <stdio.h> | |
#include <stdlib.h> | |
#include <string.h> | |
int addi(int a, int b) { | |
return a + b; | |
} | |
char *adds(char *a, char *b) { | |
char *res = malloc(strlen(a) + strlen(b) + 1); |
""" | |
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
BSD License | |
""" | |
import numpy as np | |
# data I/O | |
data = open('input.txt', 'r').read() # should be simple plain text file | |
chars = list(set(data)) | |
data_size, vocab_size = len(data), len(chars) |
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """ | |
import numpy as np | |
import cPickle as pickle | |
import gym | |
# hyperparameters | |
H = 200 # number of hidden layer neurons | |
batch_size = 10 # every how many episodes to do a param update? | |
learning_rate = 1e-4 | |
gamma = 0.99 # discount factor for reward |
import time | |
import numpy as np | |
from numpy.fft import fft2, ifft2 | |
from matplotlib import pyplot, animation | |
def fft_convolve2d(board, kernal): | |
board_ft = fft2(board) | |
kernal_ft = fft2(kernal) | |
height, width = board_ft.shape |
def sample_gumbel(shape, eps=1e-20): | |
"""Sample from Gumbel(0, 1)""" | |
U = tf.random_uniform(shape,minval=0,maxval=1) | |
return -tf.log(-tf.log(U + eps) + eps) | |
def gumbel_softmax_sample(logits, temperature): | |
""" Draw a sample from the Gumbel-Softmax distribution""" | |
y = logits + sample_gumbel(tf.shape(logits)) | |
return tf.nn.softmax( y / temperature) |
using UnityEngine; | |
using System.Collections; | |
public class IK : MonoBehaviour { | |
public Vector3 Target = new Vector3(-8, 0, 0); | |
public Vector3 BendTarget = new Vector3(-4, 0, 3); | |
public float Transition = 1f; | |
public GameObject[] Members = new GameObject[3]; |
from contextlib import contextmanager | |
import numpy as np | |
import torch | |
from torch import Tensor, ByteTensor | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
import pycuda.driver | |
from pycuda.gl import graphics_map_flags | |
from glumpy import app, gloo, gl |
# https://mail.python.org/pipermail/scipy-user/2011-May/029521.html | |
import numpy as np | |
def KLdivergence(x, y): | |
"""Compute the Kullback-Leibler divergence between two multivariate samples. | |
Parameters | |
---------- | |
x : 2D array (n,d) |