INSERT GRAPHIC HERE (include hyperlink in image)
Subtitle or Short Description Goes Here
ideally one sentence >
| #include <stdio.h> | |
| #include <stdlib.h> | |
| #include <string.h> | |
| int addi(int a, int b) { | |
| return a + b; | |
| } | |
| char *adds(char *a, char *b) { | |
| char *res = malloc(strlen(a) + strlen(b) + 1); |
| """ | |
| Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
| BSD License | |
| """ | |
| import numpy as np | |
| # data I/O | |
| data = open('input.txt', 'r').read() # should be simple plain text file | |
| chars = list(set(data)) | |
| data_size, vocab_size = len(data), len(chars) |
| """ Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """ | |
| import numpy as np | |
| import cPickle as pickle | |
| import gym | |
| # hyperparameters | |
| H = 200 # number of hidden layer neurons | |
| batch_size = 10 # every how many episodes to do a param update? | |
| learning_rate = 1e-4 | |
| gamma = 0.99 # discount factor for reward |
| import time | |
| import numpy as np | |
| from numpy.fft import fft2, ifft2 | |
| from matplotlib import pyplot, animation | |
| def fft_convolve2d(board, kernal): | |
| board_ft = fft2(board) | |
| kernal_ft = fft2(kernal) | |
| height, width = board_ft.shape |
| def sample_gumbel(shape, eps=1e-20): | |
| """Sample from Gumbel(0, 1)""" | |
| U = tf.random_uniform(shape,minval=0,maxval=1) | |
| return -tf.log(-tf.log(U + eps) + eps) | |
| def gumbel_softmax_sample(logits, temperature): | |
| """ Draw a sample from the Gumbel-Softmax distribution""" | |
| y = logits + sample_gumbel(tf.shape(logits)) | |
| return tf.nn.softmax( y / temperature) |
| using UnityEngine; | |
| using System.Collections; | |
| public class IK : MonoBehaviour { | |
| public Vector3 Target = new Vector3(-8, 0, 0); | |
| public Vector3 BendTarget = new Vector3(-4, 0, 3); | |
| public float Transition = 1f; | |
| public GameObject[] Members = new GameObject[3]; |
| from contextlib import contextmanager | |
| import numpy as np | |
| import torch | |
| from torch import Tensor, ByteTensor | |
| import torch.nn.functional as F | |
| from torch.autograd import Variable | |
| import pycuda.driver | |
| from pycuda.gl import graphics_map_flags | |
| from glumpy import app, gloo, gl |
| # https://mail.python.org/pipermail/scipy-user/2011-May/029521.html | |
| import numpy as np | |
| def KLdivergence(x, y): | |
| """Compute the Kullback-Leibler divergence between two multivariate samples. | |
| Parameters | |
| ---------- | |
| x : 2D array (n,d) |