Created
May 13, 2019 16:02
-
-
Save ptrblck/032c93816ccb1defb19222f1ab1951f6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from apex import amp | |
class SiameseTower(nn.Module): | |
def __init__(self, inplanes=3, planes=32,blocks=3): | |
super(SiameseTower, self).__init__() | |
self.preprocessor = nn.Sequential( | |
nn.Conv2d(inplanes, planes, kernel_size=3,stride=1,padding=1,bias=True), | |
BasicBlock(planes,planes), | |
BasicBlock(planes,planes), | |
BasicBlock(planes,planes), | |
) | |
block_list = [] | |
for block in range(blocks): | |
block_list.append(BasicBlock(planes, planes, stride=1)) | |
#block_list.append(conv_bn_relu_downsample(planes)) | |
self.residual_blocks = nn.Sequential(*block_list) | |
self.final = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1) | |
def forward(self, x): | |
x = self.preprocessor(x) | |
print(x.shape) | |
x = self.residual_blocks(x) | |
x = self.final(x) | |
return(x) | |
class BasicBlock(torch.nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, dilation=1,downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, 3, stride, 1, dilation=dilation) | |
self.bn1 = nn.BatchNorm2d(planes) | |
# self.relu = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(planes, planes, 3, stride, 1, dilation=dilation) | |
self.bn2 = nn.BatchNorm2d(planes) | |
if stride > 1 and downsample is None: | |
downsample = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1,dilation=1) | |
self.downsample = downsample | |
self.stride = stride | |
self.act = torch.nn.LeakyReLU(negative_slope=0.2) | |
# self. | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.act(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
print(out.shape, residual.shape) | |
out += residual | |
out = self.act(out) | |
return out | |
class MyModel(nn.Module): | |
def __init__(self): | |
super(MyModel, self).__init__() | |
self.feature_extractor = SiameseTower(inplanes=3, blocks=1) | |
def forward(self, x): | |
x = self.feature_extractor(x) | |
return x | |
model = MyModel().cuda() | |
criterion = nn.MSELoss() | |
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3, eps=1e-8) | |
model, optimizer = amp.initialize(model, optimizer, opt_level='O1') | |
x = torch.randn(10, 3, 24, 24, device='cuda') | |
output = model(x) | |
loss = criterion(output, torch.randn(output.size(), device='cuda')) | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment