Created
August 7, 2019 10:45
-
-
Save ptrblck/0e84ecc6b29fa17b0b230fb0c52415c1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import time | |
torch.backends.cudnn.benchmark = True | |
# 1a) | |
I, J, K = 64, 1024, 1024 | |
A = torch.randn(I, J, device='cuda', dtype=torch.half) | |
B = torch.randn(J, K, device='cuda', dtype=torch.half) | |
# warumup | |
for _ in range(50): | |
C = torch.matmul(A, B) | |
torch.cuda.synchronize() | |
nb_iters = 1000 | |
torch.cuda.synchronize() | |
t0 = time.time() | |
for _ in range(nb_iters): | |
C = torch.matmul(A, B) | |
torch.cuda.synchronize() | |
t1 = time.time() | |
print('1a) {:.3f}us per iteration)'.format((t1 - t0) / nb_iters * 1e6)) | |
# 1b) | |
I, J, K = 1, 1024, 1024 | |
A = torch.randn(I, J, device='cuda', dtype=torch.half) | |
B = torch.randn(J, K, device='cuda', dtype=torch.half) | |
# warumup | |
for _ in range(50): | |
C = torch.matmul(A, B) | |
torch.cuda.synchronize() | |
nb_iters = 1000 | |
torch.cuda.synchronize() | |
t0 = time.time() | |
for _ in range(nb_iters): | |
C = torch.matmul(A, B) | |
torch.cuda.synchronize() | |
t1 = time.time() | |
print('1b) {:.3f}us per iteration'.format((t1 - t0) / nb_iters * 1e6)) | |
# 2a) | |
I, J, K = 63, 1023, 1023 | |
A = torch.randn(I, J, device='cuda', dtype=torch.half) | |
B = torch.randn(J, K, device='cuda', dtype=torch.half) | |
# warumup | |
for _ in range(50): | |
C = torch.matmul(A, B) | |
torch.cuda.synchronize() | |
nb_iters = 1000 | |
torch.cuda.synchronize() | |
t0 = time.time() | |
for _ in range(nb_iters): | |
C = torch.matmul(A, B) | |
torch.cuda.synchronize() | |
t1 = time.time() | |
print('2a) {:.3f}us per iteration'.format((t1 - t0) / nb_iters * 1e6)) | |
# 2b) | |
I, J, K = 1, 1023, 1023 | |
A = torch.randn(I, J, device='cuda', dtype=torch.half) | |
B = torch.randn(J, K, device='cuda', dtype=torch.half) | |
# warumup | |
for _ in range(50): | |
C = torch.matmul(A, B) | |
torch.cuda.synchronize() | |
nb_iters = 1000 | |
torch.cuda.synchronize() | |
t0 = time.time() | |
for _ in range(nb_iters): | |
C = torch.matmul(A, B) | |
torch.cuda.synchronize() | |
t1 = time.time() | |
print('2b) {:.3f}us per iteration'.format((t1 - t0) / nb_iters * 1e6)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment