Created
July 5, 2022 23:23
-
-
Save ptrblck/92240042730b37b3788b811957b126c5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class LayerNorm(nn.Module): | |
def __init__(self, normalized_shape, eps=1e-6): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.normalized_shape = (normalized_shape, ) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
# setup | |
iteration_count = 100 | |
N, C, H, W = 2, 3, 4, 4 | |
x = torch.randn(N, C, H, W, device='cuda') | |
norm = LayerNorm(C).to('cuda') | |
parameters = norm.parameters() | |
norm_scripted = torch.jit.script(norm) | |
grad_output = torch.rand_like(x) | |
x_channels_last = x.permute(0, 2, 3, 1).contiguous() | |
grad_output_channels_last = grad_output.permute(0, 2, 3, 1).contiguous() | |
backward = True | |
# reference | |
out = norm(x) | |
out_scripted = norm_scripted(x) | |
print((out_scripted - out).abs().max()) | |
# tensor(2.9802e-07, device='cuda:0', grad_fn=<MaxBackward1>) | |
out_channels_last = F.layer_norm(x_channels_last, norm.normalized_shape, norm.weight, norm.bias, norm.eps) | |
print((out_channels_last.permute(0, 3, 1, 2) - out).abs().max()) | |
# tensor(3.5763e-07, device='cuda:0', grad_fn=<MaxBackward1>) | |
# Eager | |
# Perform warm-up iterations | |
for _ in range(3): | |
# Run model, forward and backward | |
output = norm(x) | |
if backward: | |
output.backward(grad_output) | |
# delete gradiens to avoid profiling the gradient accumulation | |
for p in parameters: | |
p.grad = None | |
# Synchronize the GPU before starting the timer | |
torch.cuda.synchronize() | |
start = time.perf_counter() | |
for _ in range(iteration_count): | |
# Run model, forward and backward | |
output = norm(x) | |
if backward: | |
output.backward(grad_output) | |
# delete gradiens to avoid profiling the gradient accumulation | |
for p in parameters: | |
p.grad = None | |
# Synchronize the GPU before stopping the timer | |
torch.cuda.synchronize() | |
stop = time.perf_counter() | |
iters_per_second = iteration_count / (stop - start) | |
print("Average iterations per second: {:.2f}".format(iters_per_second)) | |
# Scripted | |
# Perform warm-up iterations | |
for _ in range(3): | |
# Run model, forward and backward | |
output = norm_scripted(x) | |
if backward: | |
output.backward(grad_output) | |
# delete gradiens to avoid profiling the gradient accumulation | |
for p in parameters: | |
p.grad = None | |
# Synchronize the GPU before starting the timer | |
torch.cuda.synchronize() | |
start = time.perf_counter() | |
for _ in range(iteration_count): | |
# Run model, forward and backward | |
output = norm_scripted(x) | |
if backward: | |
output.backward(grad_output) | |
# delete gradiens to avoid profiling the gradient accumulation | |
for p in parameters: | |
p.grad = None | |
# Synchronize the GPU before stopping the timer | |
torch.cuda.synchronize() | |
stop = time.perf_counter() | |
iters_per_second = iteration_count / (stop - start) | |
print("Average iterations per second: {:.2f}".format(iters_per_second)) | |
# Channels-last with native implementation | |
# Perform warm-up iterations | |
for _ in range(3): | |
# Run model, forward and backward | |
output = F.layer_norm(x_channels_last, norm.normalized_shape, norm.weight, norm.bias, norm.eps) | |
if backward: | |
output.backward(grad_output_channels_last) | |
# delete gradiens to avoid profiling the gradient accumulation | |
for p in parameters: | |
p.grad = None | |
# Synchronize the GPU before starting the timer | |
torch.cuda.synchronize() | |
start = time.perf_counter() | |
for _ in range(iteration_count): | |
# Run model, forward and backward | |
output = F.layer_norm(x_channels_last, norm.normalized_shape, norm.weight, norm.bias, norm.eps) | |
if backward: | |
output.backward(grad_output_channels_last) | |
# delete gradiens to avoid profiling the gradient accumulation | |
for p in parameters: | |
p.grad = None | |
# Synchronize the GPU before stopping the timer | |
torch.cuda.synchronize() | |
stop = time.perf_counter() | |
iters_per_second = iteration_count / (stop - start) | |
print("Average iterations per second: {:.2f}".format(iters_per_second)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment