Created
July 11, 2019 16:27
-
-
Save ptrblck/ab45bfcde6df55ac28a7be18531f4718 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
def print_types(input, bn, output): | |
print('input.type(): {}'.format(input.type())) | |
if bn.weight is not None: | |
print('bn.weight.type(): {}'.format(bn.weight.type())) | |
else: | |
print('bn.weight is empty') | |
if bn.bias is not None: | |
print('bn.bias.type(): {}'.format(bn.bias.type())) | |
else: | |
print('bn.bias is empty') | |
print('bn.running_mean.type(): {}'.format(bn.running_mean.type())) | |
print('bn.running_var.type(): {}'.format(bn.running_var.type())) | |
print('output.type(): {}'.format(output.type())) | |
device = 'cuda' | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--local_rank', type=int, default=0) | |
args = parser.parse_args() | |
torch.cuda.set_device(args.local_rank) | |
torch.distributed.init_process_group(backend='nccl', init_method='env://') | |
bn = nn.BatchNorm2d(3, affine=True).cuda() | |
# Add dummy layer so that DDP gets some valid parameters | |
sbn = nn.SyncBatchNorm.convert_sync_batchnorm(nn.Sequential(bn, nn.Conv2d(3, 3, 3, 1, 1).cuda().half())) | |
sbn = nn.parallel.DistributedDataParallel(sbn, device_ids=[args.local_rank], output_device=args.local_rank) | |
x = torch.randn(16, 3, 24, 24, dtype=torch.half, device='cuda') | |
print('\nsbn, affine=True, train') | |
try: | |
output = sbn(x) | |
print_types(x, sbn.module[0], output) | |
except RuntimeError as e: | |
print('RuntimeError: ', e) | |
print('\nsbn, affine=True, eval') | |
sbn.eval() | |
try: | |
output = sbn(x) | |
print_types(x, sbn.module[0], output) | |
except RuntimeError as e: | |
print('RuntimeError: ', e) | |
x = torch.randn(16, 3, 24, 24, dtype=torch.half, device='cuda') | |
print('\nsbn, affine=False, train') | |
bn = nn.BatchNorm2d(3, affine=False).cuda() | |
sbn = nn.SyncBatchNorm.convert_sync_batchnorm(nn.Sequential(bn, nn.Conv2d(3, 3, 3, 1, 1).cuda().half())) | |
sbn = nn.parallel.DistributedDataParallel(sbn, device_ids=[args.local_rank], output_device=args.local_rank) | |
try: | |
output = sbn(x) | |
print_types(x, sbn.module[0], output) | |
except RuntimeError as e: | |
print('RuntimeError: ', e) | |
print('\nsbn, affine=False, eval') | |
sbn.eval() | |
try: | |
output = sbn(x) | |
print_types(x, sbn.module[0], output) | |
except RuntimeError as e: | |
print('RuntimeError: ', e) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment