Created
August 13, 2018 09:59
-
-
Save ptrblck/e6a59d2ad9a719ad74e9d84de61b0f30 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.utils.data import Dataset, DataLoader | |
device = 'cpu' | |
class MyDataset(Dataset): | |
def __init__(self): | |
self.data = torch.randn(100, 5) | |
self.target = torch.empty(100, dtype=torch.long).random_(2) | |
def __getitem__(self, index): | |
x = self.data[index] | |
y = self.target[index] | |
return x, y | |
def __len__(self): | |
return len(self.data) | |
model = nn.Sequential( | |
nn.Linear(5, 5), | |
nn.ReLU(), | |
nn.Linear(5, 2), | |
nn.LogSoftmax(dim=1) | |
) | |
model.to(device) | |
criterion = nn.NLLLoss() | |
optimizer = optim.Adam(model.parameters(), lr=1e-1) | |
dataset = MyDataset() | |
loader = DataLoader(dataset, batch_size=100, num_workers=2, shuffle=True) | |
epochs = 100 | |
for epoch in range(epochs): | |
for batch_idx, (data, target) in enumerate(loader): | |
optimizer.zero_grad() | |
data = data.to(device) | |
target = target.to(device) | |
output = model(data) | |
loss = criterion(output, target) | |
loss.backward() | |
optimizer.step() | |
print('Epoch {}, loss {}'.format(epoch, loss.item())) | |
# =========================================================== | |
def step(batch, model, criterion, optimizer=None): | |
# let go of old gradients | |
model.zero_grad() | |
x = batch[0].to(device) | |
y = batch[1].to(device) | |
## Forward Pass ## | |
predictions = model(x) | |
## Calculate Loss ## | |
loss = criterion(predictions, y) | |
if optimizer is not None: | |
# backward pass + optimize | |
loss.backward() | |
optimizer.step() | |
return loss | |
def train_model(model=None, lr=0.01): | |
criterion = nn.NLLLoss() | |
params = list(filter(lambda p: p.requires_grad, model.parameters())) | |
optimizer = torch.optim.Adam(params=params, lr=lr) | |
for epoch in range(1, epochs+1): | |
for i, batch in enumerate(loader): | |
loss = step(batch, model, criterion, optimizer=optimizer) | |
print('Epoch {}, loss {}'.format(epoch, loss.item())) | |
model = nn.Sequential( | |
nn.Linear(5, 5), | |
nn.ReLU(), | |
nn.Linear(5, 2), | |
nn.LogSoftmax(dim=1) | |
) | |
model.to(device) | |
train_model(model, lr=1e-1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment