Skip to content

Instantly share code, notes, and snippets.

Code to test:
x = torch.randint(2, (1000, 1000))
torch_times = {}
torch_tmp = []
for dim in range(2):
for _ in range(10):
t0 = time.perf_counter()
tu, ti = torch.unique(x, return_inverse=True, dim=dim)
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 21 19:26:32 2018
@author: ptrblck
"""
import torch
import numpy as np
import torch
import torch.nn as nn
batch_size = 10
channels = 3
h, w = 16, 16
x = torch.randn(batch_size, channels, h, w)
pool = nn.AvgPool2d((1, 2), (1, 2))
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
device = 'cpu'
class MyDataset(Dataset):
conda create -n pytorch4 python=3.6
conda activate pytorch4
conda install pytorch=0.4.0 torchvision -c pytorch
pip install requests dominate
conda install opencv pillow scipy
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torchvision.models as models
import torchvision.transforms as transforms
# Use standard model with [batch_size, 3, 224, 224] input
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
torch.manual_seed(2809)
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
class UNet_down_block(torch.nn.Module):
def __init__(self, input_channel, output_channel, down_size):
super(UNet_down_block, self).__init__()
self.conv1 = torch.nn.Conv2d(input_channel, output_channel, 3, padding=1)
self.bn1 = torch.nn.BatchNorm2d(output_channel)
self.conv2 = torch.nn.Conv2d(output_channel, output_channel, 3, padding=1)
from __future__ import print_function, division
import torch
from torch.autograd import Variable
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler