Created
November 17, 2012 01:35
-
-
Save ptrv/4092517 to your computer and use it in GitHub Desktop.
Simple force directed graph drawing algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# Force-Directed Graph Drawing | |
import Tkinter | |
import random | |
import math | |
# d = [ | |
# [.0, .3, .3, .0], | |
# [.3, .0, .3, .0], | |
# [.3, .3, .0, .3], | |
# [.0, .0, .3, .0] | |
# ] | |
d = [] | |
nrows = 5 | |
ncols = 5 | |
for i in xrange(nrows * ncols): | |
ci = i % ncols | |
ri = i / ncols | |
dr = [] | |
for j in xrange(nrows * ncols): | |
cj = j % ncols | |
rj = j / ncols | |
if ((ci == cj) and (ri == rj - 1 or ri == rj + 1) | |
or (ri == rj and (ci == cj - 1 or ci == cj + 1))): | |
dr.append(.1) | |
else: | |
dr.append(.0) | |
d.append(dr) | |
# mass | |
alpha = 1.0 | |
beta = .0001 | |
k = 1.0 | |
#damping | |
eta = .99 | |
delta_t = .01 | |
m = len(d) | |
root = Tkinter.Tk() | |
canvas = Tkinter.Canvas(root, width=500, height=500, background="yellow") | |
canvas.pack() | |
x = [] | |
v = [] | |
ids = [] | |
def move_oval(i): | |
newx = int(x[i][0] * 500) | |
newy = int(x[i][1] * 500) | |
canvas.coords(ids[i], newx - 5, newy - 5, newx + 5, newy + 5) | |
for i in xrange(m): | |
xi = [random.random(), random.random()] | |
x.append(xi) | |
v.append([0.0, 0.0]) | |
id = canvas.create_oval(245, 245, 255, 255, fill="red") | |
ids.append(id) | |
move_oval(i) | |
lids = [] | |
def move_line(id, xi, xj): | |
canvas.coords(id, | |
int(xi[0] * 500), | |
int(xi[1] * 500), | |
int(xj[0] * 500), | |
int(xj[1] * 500)) | |
for i in xrange(m): | |
for j in xrange(m): | |
if d[i][j] != 0: | |
id = canvas.create_line(0, 0, 0, 0) | |
lids.append(id) | |
move_line(id, x[i], x[j]) | |
def Coulomb_force(xi, xj): | |
dx = xj[0] - xi[0] | |
dy = xj[1] - xi[1] | |
ds2 = dx * dx + dy * dy | |
ds = math.sqrt(ds2) | |
ds3 = ds2 * ds | |
if ds3 == 0.0: | |
const = 0 | |
else: | |
const = beta / (ds2 * ds) | |
return [-const * dx, -const * dy] | |
def Hooke_force(xi, xj, dij): | |
dx = xj[0] - xi[0] | |
dy = xj[1] - xi[1] | |
ds = math.sqrt(dx * dx + dy * dy) | |
dl = ds - dij | |
const = k * dl / ds | |
return [const * dx, const * dy] | |
def move(): | |
ekint = [0.0, 0.0] | |
for i in xrange(m): | |
Fx = 0.0 | |
Fy = 0.0 | |
for j in xrange(m): | |
if j == 1: | |
continue | |
dij = d[i][j] | |
Fij = 0.0 | |
if dij == 0.0: | |
Fij = Coulomb_force(x[i], x[j]) | |
else: | |
Fij = Hooke_force(x[i], x[j], dij) | |
Fx += Fij[0] | |
Fy += Fij[1] | |
v[i][0] = (v[i][0] + alpha * Fx * delta_t) * eta | |
v[i][1] = (v[i][1] + alpha * Fy * delta_t) * eta | |
ekint[0] = ekint[0] + alpha * (v[i][0] * v[i][0]) | |
ekint[1] = ekint[1] + alpha * (v[i][1] * v[i][1]) | |
print "total kinetic energy: %lf" % math.sqrt(ekint[0] * ekint[0] + ekint[1] * ekint[1]) | |
for i in xrange(m): | |
x[i][0] += v[i][0] * delta_t | |
x[i][1] += v[i][1] * delta_t | |
move_oval(i) | |
li = 0 | |
for i in xrange(m): | |
for j in xrange(m): | |
if d[i][j] != 0: | |
id = lids[li] | |
move_line(id, x[i], x[j]) | |
li += 1 | |
root.after(1, move) | |
root.after(1, move) | |
root.mainloop() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
looks like there is a bug on line 111, shouldn't that be an i not a 1? i wish there were more comments about what the 'd' matrix does. It is a 5x5 matrix, with either 0 or 0.1 in it; some kind of convolution kernel?