Skip to content

Instantly share code, notes, and snippets.

@puffnfresh
Last active September 15, 2018 21:20
Show Gist options
  • Save puffnfresh/35213f97ec189757a179 to your computer and use it in GitHub Desktop.
Save puffnfresh/35213f97ec189757a179 to your computer and use it in GitHub Desktop.
Algebraic Ornaments!
module reornament
-- Idris translation of Agda code:
-- https://gist.github.com/gallais/e507832abc6c91ac7cb9
-- Which follows Conor McBride's Ornaments paper:
-- https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/Ornament.pdf
ListAlg : Type -> Type -> Type
ListAlg A B = (B, A -> B -> B)
data ListSpec : (A : Type) -> {B : Type} -> ListAlg A B -> B -> Type where
Nil : {A, B : Type} -> {alg : ListAlg A B} -> ListSpec A alg (fst alg)
(::) : {A, B : Type} -> (a : A) -> {b : B} -> (as : ListSpec A alg b) -> ListSpec A alg (snd alg a b)
AlgLength : {A : Type} -> ListAlg A Nat
AlgLength = (0, (\_ => succ))
AlgSum : ListAlg Nat Nat
AlgSum = (0, (+))
Algx : {A, B, C : Type} -> (algB : ListAlg A B) -> (algC : ListAlg A C) ->
ListAlg A (B, C)
Algx (b, sucB) (c, sucC) = ((b, c), (\a => \(b, c) => (sucB a b, sucC a c)))
Vec : (A : Type) -> (n : Nat) -> Type
Vec A n = ListSpec A AlgLength n
allFin4 : Vec Nat 4
allFin4 = [0, 1, 2, 3]
Distribution : Type
Distribution = ListSpec Nat AlgSum 100
uniform : Distribution
uniform = [25, 25, 25, 25]
SizedDistribution : Nat -> Type
SizedDistribution n = ListSpec Nat (Algx AlgLength AlgSum) (n, 100)
uniform4 : SizedDistribution 4
uniform4 = [25, 25, 25, 25]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment