Skip to content

Instantly share code, notes, and snippets.

@pvalienteverde
Created March 30, 2016 18:03
Show Gist options
  • Save pvalienteverde/f54dc3841248f310a38dad7fe42a9279 to your computer and use it in GitHub Desktop.
Save pvalienteverde/f54dc3841248f310a38dad7fe42a9279 to your computer and use it in GitHub Desktop.
def wrapper_logistic_regression_with_L2(l2_penalty,
feature_matrix=feature_matrix_train,
sentiment=sentiment_train,
initial_coefficients=np.zeros(194),
step_size=5e-6, max_iter=501):
coef=logistic_regression_with_L2(feature_matrix, sentiment, initial_coefficients, step_size, l2_penalty, max_iter)
return (l2_penalty,coef)
from multiprocessing import Pool
# Run
n_cores=4
pool = Pool(processes=n_cores)
resultados=[pool.map(wrapper_logistic_regression_with_L2, [0,4,10,1e2,1e3,1e5])]
# create dataframe with relation l2 - coefficients
for l2,coef in resultados[0]:
add_coefficients_to_table(coef, 'coefficients [L2={:0.0f}]'.format(l2))
# show result
for l2,coef in resultados[0]:
train_accurancy=get_classification_accuracy(feature_matrix_train, sentiment_train, coef)
validation_accurancy=get_classification_accuracy(feature_matrix_valid, sentiment_valid, coef)
print ("L2 penalty = {}".format(l2) )
print ("train accuracy = {}, validation_accuracy = {}".format(train_accurancy, validation_accurancy))
print ("--------------------------------------------------------------------------------")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment