Skip to content

Instantly share code, notes, and snippets.

@pyaf
Created May 20, 2018 11:46
Show Gist options
  • Save pyaf/1df5bf4cefe1124d562b00903e79bb2a to your computer and use it in GitHub Desktop.
Save pyaf/1df5bf4cefe1124d562b00903e79bb2a to your computer and use it in GitHub Desktop.
CNN model architecture
def CNN_model():
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(124, 124, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment