Skip to content

Instantly share code, notes, and snippets.

@pycaret
Last active August 1, 2020 13:39
Show Gist options
  • Save pycaret/5b2efc98acc9a1343fa1ea49374bfa6a to your computer and use it in GitHub Desktop.
Save pycaret/5b2efc98acc9a1343fa1ea49374bfa6a to your computer and use it in GitHub Desktop.
# import classification module
from pycaret.classification import *
# init setup
clf1 = setup(data, target = 'name-of-target')
# train a decision tree model
dt = create_model('dt')
# tune hyperparameters of decision tree
tuned_dt = tune_model(dt)
# tune hyperparameters with increased n_iter
tuned_dt = tune_model(dt, n_iter = 50)
# tune hyperparameters to optimize AUC
tuned_dt = tune_model(dt, optimize = 'AUC') #default is 'Accuracy'
# tune hyperparameters with custom_grid
params = {"max_depth": np.random.randint(1, (len(data.columns)*.85),20),
"max_features": np.random.randint(1, len(data.columns),20),
"min_samples_leaf": [2,3,4,5,6],
"criterion": ["gini", "entropy"]
}
tuned_dt_custom = tune_model(dt, custom_grid = params)
# tune multiple models dynamically
top3 = compare_models(n_select = 3)
tuned_top3 = [tune_model(i) for i in top3]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment