Created
January 7, 2017 18:04
-
-
Save pyk/0e07fb911b3d54f5b28b399c4a8b4aaf to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def read_images(data_dir): | |
pattern = os.path.join(data_dir, '*.png') | |
filenames = tf.train.match_filenames_once(pattern, name='list_files') | |
queue = tf.train.string_input_producer( | |
filenames, | |
num_epochs=NUM_EPOCHS, | |
shuffle=True, | |
name='queue') | |
reader = tf.WholeFileReader() | |
filename, content = reader.read(queue, name='read_image') | |
filename = tf.Print( | |
filename, | |
data=[filename], | |
message='loading: ') | |
filename_split = tf.string_split([filename], delimiter='/') | |
label_id = tf.string_to_number(tf.substr(filename_split.values[1], | |
0, 1), out_type=tf.int32) | |
label = tf.one_hot( | |
label_id-1, | |
5, | |
on_value=1.0, | |
off_value=0.0, | |
dtype=tf.float32) | |
img_tensor = tf.image.decode_png( | |
content, | |
dtype=tf.uint8, | |
channels=3, | |
name='img_decode') | |
# Preprocess the image, Performs random transformations | |
# Random flip | |
img_tensor_flip = tf.image.random_flip_left_right(img_tensor) | |
# Random brightness | |
img_tensor_bri = tf.image.random_brightness(img_tensor_flip, | |
max_delta=0.2) | |
# Per-image scaling | |
img_tensor_std = tf.image.per_image_standardization(img_tensor_bri) | |
min_after_dequeue = 1000 | |
capacity = min_after_dequeue + 3 * BATCH_SIZE | |
example_batch, label_batch = tf.train.shuffle_batch( | |
[img_tensor_std, label], | |
batch_size=BATCH_SIZE, | |
shapes=[(IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS), (NUM_CLASS)], | |
capacity=capacity, | |
min_after_dequeue=min_after_dequeue, | |
name='train_shuffle') | |
return example_batch, label_batch |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment