Created
January 7, 2017 17:59
-
-
Save pyk/bbd56ec5ccc4b2878f68cc2acb7f572a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Convolutional layer 1 | |
with tf.name_scope('conv1'): | |
W = tf.Variable( | |
tf.truncated_normal( | |
shape=( | |
CONV1_FILTER_SIZE, | |
CONV1_FILTER_SIZE, | |
NUM_CHANNELS, | |
CONV1_FILTER_COUNT), | |
dtype=tf.float32, | |
stddev=5e-2), | |
name='weights') | |
b = tf.Variable( | |
tf.zeros( | |
shape=(CONV1_FILTER_COUNT), | |
dtype=tf.float32), | |
name='biases') | |
conv = tf.nn.conv2d( | |
input=images, | |
filter=W, | |
strides=(1, 1, 1, 1), | |
padding='SAME', | |
name='convolutional') | |
conv_bias = tf.nn.bias_add(conv, b) | |
conv_act = tf.nn.relu( | |
features=conv_bias, | |
name='activation') | |
pool1 = tf.nn.max_pool( | |
value=conv_act, | |
ksize=(1, 2, 2, 1), | |
strides=(1, 2, 2, 1), | |
padding='SAME', | |
name='subsampling') | |
# Convolutional layer 2 | |
with tf.name_scope('conv2'): | |
W = tf.Variable( | |
tf.truncated_normal( | |
shape=( | |
CONV2_FILTER_SIZE, | |
CONV2_FILTER_SIZE, | |
CONV1_FILTER_COUNT, | |
CONV2_FILTER_COUNT), | |
dtype=tf.float32, | |
stddev=5e-2), | |
name='weights') | |
b = tf.Variable( | |
tf.zeros( | |
shape=(CONV2_FILTER_COUNT), | |
dtype=tf.float32), | |
name='biases') | |
conv = tf.nn.conv2d( | |
input=pool1, | |
filter=W, | |
strides=(1, 1, 1, 1), | |
padding='SAME', | |
name='convolutional') | |
conv_bias = tf.nn.bias_add(conv, b) | |
conv_act = tf.nn.relu( | |
features=conv_bias, | |
name='activation') | |
pool2 = tf.nn.max_pool( | |
value=conv_act, | |
ksize=(1, 2, 2, 1), | |
strides=(1, 2, 2, 1), | |
padding='SAME', | |
name='subsampling') | |
# Hidden layer | |
with tf.name_scope('hidden'): | |
conv_output_size = 28800 | |
W = tf.Variable( | |
tf.truncated_normal( | |
shape=(conv_output_size, HIDDEN_LAYER_SIZE), | |
dtype=tf.float32, | |
stddev=5e-2), | |
name='weights') | |
b = tf.Variable( | |
tf.zeros( | |
shape=(HIDDEN_LAYER_SIZE), | |
dtype=tf.float32), | |
name='biases') | |
reshape = tf.reshape( | |
tensor=pool2, | |
shape=[BATCH_SIZE, -1]) | |
h1 = tf.nn.relu( | |
features=tf.add(tf.matmul(reshape, W), b), | |
name='activation') | |
# Softmax layer | |
with tf.name_scope('softmax'): | |
W = tf.Variable( | |
tf.truncated_normal( | |
shape=(HIDDEN_LAYER_SIZE, NUM_CLASS), | |
dtype=tf.float32, | |
stddev=5e-2), | |
name='weights') | |
b = tf.Variable( | |
tf.zeros( | |
shape=(NUM_CLASS), | |
dtype=tf.float32), | |
name='biases') | |
logits = tf.add(tf.matmul(h1, W), b, name='logits') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment