Created
April 13, 2012 01:54
-
-
Save pylemon/2372868 to your computer and use it in GitHub Desktop.
python: map with lambda is slow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
>>> import timeit | |
>>> | |
>>> data = 'data=xrange(1000000)' | |
>>> | |
>>> # be careful when using lambda with map | |
>>> timeit.timeit('map(lambda x:x*2, data)', data, number=20) | |
3.8384609954834 | |
>>> | |
>>> # using list comprehension will be faster | |
>>> timeit.timeit('[i*2 for i in data]', data, number=20) | |
1.7002441883087158 | |
>>> | |
>>> # using builtin function will be fast | |
>>> timeit.timeit('map(2 .__mul__, data)', data, number=20) | |
1.7502341270446777 | |
# tests in pypy | |
>>> import timeit | |
>>> data = range(10000000) | |
>>> timeit.timeit('[i*2 for i in data]', 'from __main__ import data', number=20) | |
23.240397930145264 | |
>>> timeit.timeit('[i*2 for i in data]', 'from __main__ import data', number=20) | |
21.457597970962524 | |
>>> timeit.timeit('map(lambda i: i*2, data)', 'from __main__ import data', number=20) | |
22.283735036849976 | |
>>> timeit.timeit('map(lambda i: i*2, data)', 'from __main__ import data', number=20) | |
24.484759092330933 | |
>>> timeit.timeit('result=[]\nappend=result.append\nfor i in data:\n\tappend(i*2)', 'from __main__ import data', number=20) | |
19.520271062850952 | |
>>> timeit.timeit('result=[]\nappend=result.append\nfor i in data:\n\tappend(i*2)', 'from __main__ import data', number=20) | |
19.50778102874756 |
恩 在邮件列表中看到讨论 pylint 将 map filter 作为不推荐函数 标记出来.
性能瓶颈一般确实不在这. 不到万不得已没必要为了这么点性能牺牲掉 readablity, 只是从这里可以看出来 python 中的函数调用 代价还是挺高的.
人家用 pypy 做了个测试 发现最快的竟然是 for 循环 比 list comprehension 都快.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
推导式会快一些.
但map, filter, reduce 一般情况下不是影响效率的因素,千万别排斥~~