Last active
November 16, 2024 20:35
-
-
Save python273/563177b3ad5b9f74c0f8f3299ec13850 to your computer and use it in GitHub Desktop.
Flask Streaming Langchain Example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
os.environ["OPENAI_API_KEY"] = "" | |
from flask import Flask, Response, request | |
import threading | |
import queue | |
from langchain.chat_models import ChatOpenAI | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from langchain.schema import AIMessage, HumanMessage, SystemMessage | |
app = Flask(__name__) | |
@app.route('/') | |
def index(): | |
# just for the example, html is included directly, move to .html file | |
return Response(''' | |
<!DOCTYPE html> | |
<html> | |
<head><title>Flask Streaming Langchain Example</title></head> | |
<body> | |
<form id="form"> | |
<input name="prompt" value="write a short koan story about seeing beyond"/> | |
<input type="submit"/> | |
</form> | |
<div id="output"></div> | |
<script> | |
const formEl = document.getElementById('form'); | |
const outputEl = document.getElementById('output'); | |
let aborter = new AbortController(); | |
async function run() { | |
aborter.abort(); // cancel previous request | |
outputEl.innerText = ''; | |
aborter = new AbortController(); | |
const prompt = new FormData(formEl).get('prompt'); | |
try { | |
const response = await fetch( | |
'/chain', { | |
signal: aborter.signal, | |
method: 'POST', | |
headers: {'Content-Type': 'application/json'}, | |
body: JSON.stringify({ | |
prompt | |
}), | |
} | |
); | |
const reader = response.body.getReader(); | |
const decoder = new TextDecoder(); | |
while (true) { | |
const { done, value } = await reader.read(); | |
if (done) { break; } | |
const decoded = decoder.decode(value, {stream: true}); | |
outputEl.innerText += decoded; | |
} | |
} catch (err) { | |
console.error(err); | |
} | |
} | |
run(); // run on initial prompt | |
formEl.addEventListener('submit', function(event) { | |
event.preventDefault(); | |
run(); | |
}); | |
</script> | |
</body> | |
</html> | |
''', mimetype='text/html') | |
class ThreadedGenerator: | |
def __init__(self): | |
self.queue = queue.Queue() | |
def __iter__(self): | |
return self | |
def __next__(self): | |
item = self.queue.get() | |
if item is StopIteration: raise item | |
return item | |
def send(self, data): | |
self.queue.put(data) | |
def close(self): | |
self.queue.put(StopIteration) | |
class ChainStreamHandler(StreamingStdOutCallbackHandler): | |
def __init__(self, gen): | |
super().__init__() | |
self.gen = gen | |
def on_llm_new_token(self, token: str, **kwargs): | |
self.gen.send(token) | |
def llm_thread(g, prompt): | |
try: | |
chat = ChatOpenAI( | |
verbose=True, | |
streaming=True, | |
callbacks=[ChainStreamHandler(g)], | |
temperature=0.7, | |
) | |
chat([HumanMessage(content=prompt)]) | |
finally: | |
g.close() | |
def chain(prompt): | |
g = ThreadedGenerator() | |
threading.Thread(target=llm_thread, args=(g, prompt)).start() | |
return g | |
@app.route('/chain', methods=['POST']) | |
def _chain(): | |
return Response(chain(request.json['prompt']), mimetype='text/plain') | |
if __name__ == '__main__': | |
app.run(threaded=True, debug=True) |
Hi all !
I wanted to share with you a Custom Stream Response that I implemented in my FastAPI application recently.
I created this solution to manage streaming data.
You can use Stream, Event of Langchain but I'm doing special things with the Handlers that's why I need it.
Here examples:
Fast API
@router.get("/myExample")
async def mySpecialAPI(
session_id: UUID,
input="Hello",
) -> StreamResponse:
# Note: Don't write await we need a coroutine
invoke = chain.ainvoke(..)
callback = MyCallback(..)
return StreamResponse(invoke, callback)
Custom Stream Response
from __future__ import annotations
import asyncio
import typing
from typing import Any, AsyncIterable, Coroutine
from fastapi.responses import StreamingResponse as FastApiStreamingResponse
from starlette.background import BackgroundTask
class StreamResponse(FastApiStreamingResponse):
def __init__(
self,
invoke: Coroutine,
callback: MyCustomAsyncIteratorCallbackHandler,
status_code: int = 200,
headers: typing.Mapping[str, str] | None = None,
media_type: str | None = "text/event-stream",
background: BackgroundTask | None = None,
) -> None:
super().__init__(
content=StreamResponse.send_message(callback, invoke),
status_code=status_code,
headers=headers,
media_type=media_type,
background=background,
)
@staticmethod
async def send_message(
callback: AsyncIteratorCallbackHandler, invoke: Coroutine
) -> AsyncIterable[str]:
asyncio.create_task(invoke)
async for token in callback.aiter():
yield token
My Custom Callbackhandler
from __future__ import annotations
import asyncio
from typing import Any, AsyncIterator, List
class MyCustomAsyncIteratorCallbackHandler(AsyncCallbackHandler):
"""Callback handler that returns an async iterator."""
# Note: Can be a BaseModel than str
queue: asyncio.Queue[Optional[str]]
# Pass your params as you want
def __init__(self) -> None:
self.queue = asyncio.Queue()
async def on_llm_new_token(
self,
token: str,
tags: List[str] | None = None,
**kwargs: Any,
) -> None:
self.queue.put_nowait(token)
async def on_llm_end(
self,
response: LLMResult,
tags: List[str] | None = None,
**kwargs: Any,
) -> None:
self.queue.put_nowait(None)
# Note: Ect.. for error
async def aiter(self) -> AsyncIterator[str]:
while True:
token = await self.queue.get()
if isinstance(token, str):
yield token # Note: or a BaseModel.model_dump_json() etc..
elif token is None:
self.queue.task_done()
break
https://gist.github.com/YanSte/7be29bc93f21b010f64936fa334a185f
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
what if we are using Tools, how can we get streamings for each tool being invoked?