Skip to content

Instantly share code, notes, and snippets.

@pythonlessons
Created May 30, 2023 08:45
Show Gist options
  • Select an option

  • Save pythonlessons/0607c4e9281856cab86cd56a2285028a to your computer and use it in GitHub Desktop.

Select an option

Save pythonlessons/0607c4e9281856cab86cd56a2285028a to your computer and use it in GitHub Desktop.
wgan_gp
import tensorflow as tf
from keras import layers
# Define the discriminator model
def build_discriminator(img_shape, activation='linear', alpha=0.2):
inputs = layers.Input(shape=img_shape, name="input")
x = layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', use_bias=False)(inputs)
x = layers.LeakyReLU(alpha)(x)
x = layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same', use_bias=False)(x)
x = layers.LeakyReLU(alpha)(x)
x = layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same', use_bias=False)(x)
x = layers.LeakyReLU(alpha)(x)
x = layers.Conv2D(512, (5, 5), strides=(2, 2), padding='same', use_bias=False)(x)
x = layers.LeakyReLU(alpha)(x)
x = layers.Flatten()(x)
x = layers.Dropout(0.5)(x)
x = layers.Dense(1, activation=activation, dtype='float32')(x)
model = tf.keras.Model(inputs=inputs, outputs=x)
return model
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment