Created
March 20, 2023 13:53
-
-
Save pythonlessons/3802b45d254c2d917c93c4e301473f09 to your computer and use it in GitHub Desktop.
handwriting_recognition_pytorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import cv2 | |
| import typing | |
| import numpy as np | |
| from mltu.inferenceModel import OnnxInferenceModel | |
| from mltu.utils.text_utils import ctc_decoder, get_cer | |
| class ImageToWordModel(OnnxInferenceModel): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| def predict(self, image: np.ndarray): | |
| image = cv2.resize(image, self.input_shape[:2][::-1]) | |
| image_pred = np.expand_dims(image, axis=0).astype(np.float32) | |
| preds = self.model.run(None, {self.input_name: image_pred})[0] | |
| text = ctc_decoder(preds, self.vocab)[0] | |
| return text | |
| if __name__ == "__main__": | |
| import pandas as pd | |
| from tqdm import tqdm | |
| model = ImageToWordModel(model_path="Models/08_handwriting_recognition_torch/202303142139/model.onnx") | |
| df = pd.read_csv("Models/08_handwriting_recognition_torch/202303142139/val.csv").values.tolist() | |
| accum_cer = [] | |
| for image_path, label in tqdm(df): | |
| image = cv2.imread(image_path) | |
| prediction_text = model.predict(image) | |
| cer = get_cer(prediction_text, label) | |
| print(f"Image: {image_path}, Label: {label}, Prediction: {prediction_text}, CER: {cer}") | |
| accum_cer.append(cer) | |
| print(f"Average CER: {np.average(accum_cer)}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment