Skip to content

Instantly share code, notes, and snippets.

@pythonlessons
Created August 22, 2023 14:47
Show Gist options
  • Save pythonlessons/83f303f9b8f87b4406cc9a00beb233fb to your computer and use it in GitHub Desktop.
Save pythonlessons/83f303f9b8f87b4406cc9a00beb233fb to your computer and use it in GitHub Desktop.
build_transformer
encoder_vocab_size = 1000
d_model = 512
encoder_embedding_layer = PositionalEmbedding(vocab_size, d_model)
random_encoder_input = np.random.randint(0, encoder_vocab_size, size=(1, 100))
encoder_embeddings = encoder_embedding_layer(random_encoder_input)
print("encoder_embeddings shape", encoder_embeddings.shape)
encoder_layer = EncoderLayer(d_model, num_heads=2, dff=2048)
encoder_layer_output = encoder_layer(encoder_embeddings)
print("encoder_layer_output shape", encoder_layer_output.shape)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment