Created
April 18, 2023 13:04
-
-
Save pythonlessons/eb26f60ab24c5d35bde5a00a86418810 to your computer and use it in GitHub Desktop.
gan_introduction
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import tensorflow as tf | |
| from keras import layers | |
| # Define the generator model | |
| def build_generator(noise_dim): | |
| inputs = layers.Input(shape=noise_dim, name="input") | |
| x = layers.Dense(7*7*256, use_bias=False)(inputs) | |
| x = layers.BatchNormalization()(x) | |
| x = layers.LeakyReLU()(x) | |
| x = layers.Reshape((7, 7, 256))(x) | |
| assert x.shape == (None, 7, 7, 256) # Note: None is the batch size | |
| x = layers.Conv2D(128, (5, 5), strides=(1, 1), padding='same', use_bias=False)(x) | |
| assert x.shape == (None, 7, 7, 128) | |
| x = layers.BatchNormalization()(x) | |
| x = layers.LeakyReLU()(x) | |
| x = layers.UpSampling2D(size=(2, 2))(x) | |
| x = layers.Conv2D(64, (5, 5), strides=(1, 1), padding='same', use_bias=False)(x) | |
| assert x.shape == (None, 14, 14, 64) | |
| x = layers.BatchNormalization()(x) | |
| x = layers.LeakyReLU()(x) | |
| x = layers.UpSampling2D(size=(2, 2))(x) | |
| x = layers.Conv2D(1, (5, 5), strides=(1, 1), padding='same', use_bias=False)(x) | |
| # add last acvitaion layer of tanh | |
| x = layers.Activation('tanh')(x) | |
| assert x.shape == (None, 28, 28, 1) | |
| model = tf.keras.Model(inputs=inputs, outputs=x) | |
| return model | |
| # Define the discriminator model | |
| def build_discriminator(img_shape): | |
| inputs = layers.Input(shape=img_shape, name="input") | |
| x = layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same')(inputs) | |
| x = layers.LeakyReLU(0.2)(x) | |
| x = layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')(x) | |
| x = layers.LeakyReLU(0.2)(x) | |
| x = layers.Flatten()(x) | |
| x = layers.Dropout(0.3)(x) | |
| x = layers.Dense(1, activation="sigmoid")(x) | |
| model = tf.keras.Model(inputs=inputs, outputs=x) | |
| return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment