Created
February 24, 2017 17:01
-
-
Save qharlie/734266a7660e02b4197a88107a0b76cb to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
for score in scores: | |
sss = StratifiedShuffleSplit() | |
search = GridSearchCV(pipe, param_grid, cv=sss, scoring="recall", n_jobs=-1) | |
search.fit(features, labels) | |
print("BEST SCORE = " + str(search.score(features_test,labels_test))) | |
print("BEST PARAMS = " + str(search.best_params_)) # the parameter combination that together got the best f1 score | |
print("BEST ESTIMATOR = " + str(search.best_estimator_)) | |
'''BEST SCORE = 1.0 | |
BEST PARAMS = {'decisiontreeclassifier__presort': True, 'pca__n_components': 6, 'selectatmostkbest__k': 3, 'decisiontreeclassifier__criterion': 'gini', 'decisiontreeclassifier__splitter': 'best'} | |
BEST ESTIMATOR = Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('pca', PCA(copy=True, iterated_power='auto', n_components=6, random_state=None, | |
svd_solver='auto', tol=0.0, whiten=False)), ('selectatmostkbest', SelectAtMostKBest(k=3, score_func=<function f_classif at 0x7f22a89...lit=2, min_weight_fraction_leaf=0.0, | |
presort=True, random_state=None, splitter='best'))]) | |
BEST SCORE = 1.0 | |
BEST PARAMS = {'decisiontreeclassifier__presort': False, 'pca__n_components': 4, 'selectatmostkbest__k': 2, 'decisiontreeclassifier__criterion': 'gini', 'decisiontreeclassifier__splitter': 'random'} | |
BEST ESTIMATOR = Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('pca', PCA(copy=True, iterated_power='auto', n_components=4, random_state=None, | |
svd_solver='auto', tol=0.0, whiten=False)), ('selectatmostkbest', SelectAtMostKBest(k=2, score_func=<function f_classif at 0x7f22a89...=2, min_weight_fraction_leaf=0.0, | |
presort=False, random_state=None, splitter='random'))]) | |
BEST SCORE = 1.0 | |
BEST PARAMS = {'decisiontreeclassifier__presort': False, 'pca__n_components': 6, 'selectatmostkbest__k': 4, 'decisiontreeclassifier__criterion': 'gini', 'decisiontreeclassifier__splitter': 'best'} | |
BEST ESTIMATOR = Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('pca', PCA(copy=True, iterated_power='auto', n_components=6, random_state=None, | |
svd_solver='auto', tol=0.0, whiten=False)), ('selectatmostkbest', SelectAtMostKBest(k=4, score_func=<function f_classif at 0x7f22a89...it=2, min_weight_fraction_leaf=0.0, | |
presort=False, random_state=None, splitter='best'))]) | |
BEST SCORE = 1.0 | |
BEST PARAMS = {'decisiontreeclassifier__presort': True, 'pca__n_components': 5, 'selectatmostkbest__k': 3, 'decisiontreeclassifier__criterion': 'gini', 'decisiontreeclassifier__splitter': 'best'} | |
BEST ESTIMATOR = Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('pca', PCA(copy=True, iterated_power='auto', n_components=5, random_state=None, | |
svd_solver='auto', tol=0.0, whiten=False)), ('selectatmostkbest', SelectAtMostKBest(k=3, score_func=<function f_classif at 0x7f22a89...lit=2, min_weight_fraction_leaf=0.0, | |
presort=True, random_state=None, splitter='best'))])''' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment