Created
February 9, 2020 21:52
-
-
Save qiuyujx/fd285e2a2638978ae08f0b5c3eae54ab to your computer and use it in GitHub Desktop.
Python Formula Parser
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import re | |
import random | |
# Prepare testing dataset | |
tags = np.array(['tag'+str(i) for i in np.random.randint(10, size=200)]) # randomly generate tag list | |
vals = np.random.randint(20, size=200) # generate a list of random integers | |
raw_df = pd.DataFrame({ | |
'tag': tags, | |
'value': vals | |
}) | |
# Functions | |
def parentheses_enclosed(s): | |
paren_order = re.findall(r'[\(\)]', s) | |
if paren_order.count('(') != paren_order.count(')'): | |
return False | |
curr_levels = [] | |
nest_lv = 0 | |
for p in paren_order: | |
if p == '(': | |
nest_lv += 1 | |
else: | |
nest_lv -= 1 | |
curr_levels.append(nest_lv) | |
if 0 in curr_levels[:-1]: | |
return False | |
else: | |
return True | |
def remove_matched_parentheses(s): | |
if ')' in s: | |
# find the first ')' | |
end = s.find(')') | |
# find the last '(' before the first ')' | |
start = max([i for i, char in enumerate(s[:end]) if char == '(' ]) | |
# remove the parentheses | |
return remove_matched_parentheses(s[:start] + s[end+1:]) | |
else: | |
return s | |
def interpret(f, df): | |
if re.match(r'\Atag[\d]+\Z', f): # e.g. 'tag1' | |
return df[df.tag == f]['value'].values | |
elif parentheses_enclosed(f) and \ | |
re.match(r'\Asum\(.+[\+\-].+\)\Z|\Aavg\(.+[\+\-].+\)\Z|\Amin\(.+[\+\-].+\)\Z|\Amax\(.+[\+\-].+\)\Z', f): | |
f_name = f[:3] # get agg func name | |
f_stripped = f[4:-1] # strip outer func | |
while re.match(r'\A\(.+\)\Z', f_stripped) and parentheses_enclosed(f_stripped): | |
f_stripped = f_stripped[1:-1] | |
comps = re.compile(r'[\+\-]').split(f_stripped) # split by + or - | |
operators = re.findall(r'[\+\-]', f_stripped) | |
comps_final = [] | |
temp_str = '' | |
for c in comps: | |
temp_str += c | |
if re.match(r'\Atag[\d]+\Z', temp_str) or parentheses_enclosed(temp_str): | |
comps_final.append(f'{f_name}({temp_str})') | |
if len(operators) > 0: | |
comps_final.append(operators.pop(0)) | |
temp_str = '' | |
else: | |
temp_str += operators.pop(0) | |
return interpret(''.join(comps_final), df) | |
elif re.match(r'\Asum\([^\(\)]+\)\Z', f): # e.g. 'sum(tag1)' | |
return np.sum(interpret(f[4:-1], df)) | |
elif re.match(r'\Aavg\([^\(\)]+\)\Z', f): # e.g. 'avg(tag1)' | |
return np.average(interpret(f[4:-1], df)) | |
elif re.match(r'\Amin\([^\(\)]+\)\Z', f): # e.g. 'min(tag1)' | |
return np.min(interpret(f[4:-1], df)) | |
elif re.match(r'\Amax\([^\(\)]+\)\Z', f): # e.g. 'max(tag1)' | |
return np.max(interpret(f[4:-1], df)) | |
elif re.match(r'\A\(.+\)\Z', f) and parentheses_enclosed(f): # e.g. '(tag1-tag2)' | |
return interpret(f[1:-1], df) | |
elif f.replace('.', '', 1).isdigit(): | |
return float(f) | |
else: | |
rest_f = remove_matched_parentheses(f) | |
if '+' in rest_f or '-' in rest_f: | |
comps = re.compile(r'[\+\-]').split(f) | |
else: | |
comps = re.compile(r'[\*\/]').split(f) | |
if comps[0].count('(') != comps[0].count(')'): | |
nested_level = comps[0].count('(') - comps[0].count(')') | |
pos = len(comps[0]) | |
for comp in comps[1:]: | |
if '(' in comp: | |
nested_level += comp.count('(') | |
if ')' in comp: | |
nested_level -= comp.count(')') | |
pos += len(comp) + 1 # +1 because of the operator inside parenthesis | |
if nested_level == 0: | |
break | |
else: | |
pos = len(comps[0]) | |
left = f[:pos] # left component | |
right = f[pos+1:] # right component | |
operator = f[pos] # the operator | |
if operator == '+': | |
return interpret(left, df) + interpret(right, df) | |
elif operator == '-': | |
return interpret(left, df) - interpret(right, df) | |
elif operator == '*': | |
return interpret(left, df) * interpret(right, df) | |
elif operator == '/': | |
denominator = interpret(right, df) | |
if denominator == 0 or denominator is np.nan: | |
return np.nan | |
else: | |
return interpret(left, df) / interpret(right, df) | |
return np.nan | |
# Verification | |
assert np.sum(raw_df[raw_df.tag == 'tag1']['value'].values) == interpret('sum(tag1)', raw_df), "Wrong!" | |
assert np.average(raw_df[raw_df.tag == 'tag1']['value'].values) == interpret('avg(tag1)', raw_df), "Wrong!" | |
assert np.min(raw_df[raw_df.tag == 'tag1']['value'].values) == interpret('min(tag1)', raw_df), "Wrong!" | |
assert np.max(raw_df[raw_df.tag == 'tag1']['value'].values) == interpret('max(tag1)', raw_df), "Wrong!" | |
assert np.sum(raw_df[raw_df.tag == 'tag1']['value'].values) + \ | |
np.sum(raw_df[raw_df.tag == 'tag2']['value'].values) == \ | |
interpret('sum(tag1)+sum(tag2)', raw_df), "Wrong!" | |
assert np.sum(raw_df[raw_df.tag == 'tag1']['value'].values) + \ | |
np.sum(raw_df[raw_df.tag == 'tag2']['value'].values) + \ | |
np.average(raw_df[raw_df.tag == 'tag3']['value'].values) == \ | |
interpret('sum(tag1)+sum(tag2)+avg(tag3)', raw_df), "Wrong!" | |
assert np.sum(raw_df[raw_df.tag == 'tag1']['value'].values) + \ | |
np.sum(raw_df[raw_df.tag == 'tag2']['value'].values) * \ | |
np.average(raw_df[raw_df.tag == 'tag3']['value'].values) == \ | |
interpret('sum(tag1)+sum(tag2)*avg(tag3)', raw_df), "Wrong!" | |
assert ( | |
np.sum(raw_df[raw_df.tag == 'tag1']['value'].values) + \ | |
(np.sum(raw_df[raw_df.tag == 'tag2']['value'].values) - \ | |
np.sum(raw_df[raw_df.tag == 'tag3']['value'].values)) + 10 | |
) * ( | |
np.max(raw_df[raw_df.tag == 'tag4']['value'].values) + \ | |
np.average(raw_df[raw_df.tag == 'tag5']['value'].values) | |
) * 0.2 == interpret('(sum(tag1+(tag2-tag3))+10)*(max(tag4)+avg(tag5))*0.2', raw_df), "Wrong!" | |
print('All pass!') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment