Skip to content

Instantly share code, notes, and snippets.

@qivigor
Created March 23, 2018 06:58
Show Gist options
  • Save qivigor/4bb7c02d120f74920549223a6ee8951b to your computer and use it in GitHub Desktop.
Save qivigor/4bb7c02d120f74920549223a6ee8951b to your computer and use it in GitHub Desktop.
name: "DFA_lower_cascade"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 1 dim: 3 dim: 224 dim: 224 } }
}
layer {
name: "last_stage_data"
type: "Input"
top: "prediction"
input_param { shape: { dim: 1 dim: 1 dim: 1 dim: 8 } }
}
# Processing Layers
layer {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
type: "Convolution"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: "ReLU"
}
layer {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
type: "Convolution"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: "ReLU"
}
layer {
bottom: "conv1_2"
top: "pool1"
name: "pool1"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
type: "Convolution"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: "ReLU"
}
layer {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
type: "Convolution"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: "ReLU"
}
layer {
bottom: "conv2_2"
top: "pool2"
name: "pool2"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
type: "Convolution"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: "ReLU"
}
layer {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
type: "Convolution"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: "ReLU"
}
layer {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
type: "Convolution"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: "ReLU"
}
layer {
bottom: "conv3_3"
top: "pool3"
name: "pool3"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: "ReLU"
}
layer {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: "ReLU"
}
layer {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: "ReLU"
}
layer {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: "ReLU"
}
layer {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: "ReLU"
}
layer {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: "ReLU"
}
layer {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool5"
top: "fc6"
name: "fc6"
type: "InnerProduct"
inner_product_param {
num_output: 4096
}
}
# last stage prediction
layer {
bottom: "prediction"
top: "fc_pre"
name: "fc_pre"
type: "InnerProduct"
inner_product_param {
num_output: 512
}
}
# Concat Layer
layer {
name: "fc6_pre"
type: "Concat"
top: "fc6_pre"
bottom: "fc6"
bottom: "fc_pre"
}
layer {
bottom: "fc6_pre"
top: "fc6_pre"
name: "relu6"
type: "ReLU"
}
layer {
bottom: "fc6_pre"
top: "fc6_pre"
name: "drop6"
type: "Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
bottom: "fc6_pre"
top: "fc7_pre"
name: "fc7_pre"
type: "InnerProduct"
inner_product_param {
num_output: 4096
}
}
layer {
bottom: "fc7_pre"
top: "fc7_pre"
name: "relu7"
type: "ReLU"
}
layer {
bottom: "fc7_pre"
top: "fc7_pre"
name: "drop7"
type: "Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
# Target Layers
layer {
name: "fc8_hardlabel"
type: "InnerProduct"
bottom: "fc7_pre"
top: "fc8_hardlabel"
inner_product_param {
num_output:20
}
}
layer {
name: "fc8_landmarks"
type: "InnerProduct"
bottom: "fc7_pre"
top: "fc8_landmarks"
inner_product_param {
num_output: 8
}
}
layer {
name: "fc8_visibility_1"
type: "InnerProduct"
bottom: "fc7_pre"
top: "fc8_visibility_1"
inner_product_param {
num_output:3
}
}
layer {
name: "fc8_visibility_2"
type: "InnerProduct"
bottom: "fc7_pre"
top: "fc8_visibility_2"
inner_product_param {
num_output: 3
}
}
layer {
name: "fc8_visibility_3"
type: "InnerProduct"
bottom: "fc7_pre"
top: "fc8_visibility_3"
inner_product_param {
num_output: 3
}
}
layer {
name: "fc8_visibility_4"
type: "InnerProduct"
bottom: "fc7_pre"
top: "fc8_visibility_4"
inner_product_param {
num_output: 3
}
}
# Concat Layer
layer {
name: "fc8"
type: "Concat"
top: "fc8"
bottom: "fc8_landmarks"
bottom: "fc8_visibility_1"
bottom: "fc8_visibility_2"
bottom: "fc8_visibility_3"
bottom: "fc8_visibility_4"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment