Last active
July 11, 2019 07:50
-
-
Save qiwihui/c152c25b7257dc1425ac09e92ca46d83 to your computer and use it in GitHub Desktop.
please see https://github.com/keras-team/keras/issues/2115 for more details.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''Train a simple deep NN on the MNIST dataset. | |
Get to 98.40% test accuracy after 20 epochs | |
(there is *a lot* of margin for parameter tuning). | |
2 seconds per epoch on a K520 GPU. | |
''' | |
import numpy as np | |
np.random.seed(1337) # for reproducibility | |
from functools import partial | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers.core import Dense, Dropout, Activation | |
from keras.optimizers import SGD, Adam, RMSprop | |
from keras.utils import np_utils | |
import keras.backend as K | |
from itertools import product | |
# Custom loss function with costs | |
def w_categorical_crossentropy(y_true, y_pred, weights): | |
nb_cl = len(weights) | |
final_mask = K.zeros_like(y_pred[:, 0]) | |
y_pred_max = K.max(y_pred, axis=1) | |
y_pred_max = K.expand_dims(y_pred_max, 1) | |
y_pred_max_mat = K.equal(y_pred, y_pred_max) | |
for c_p, c_t in product(range(nb_cl), range(nb_cl)): | |
final_mask += (K.cast(weights[c_t, c_p], K.floatx()) * K.cast( | |
y_pred_max_mat[:, c_p], K.floatx()) * K.cast( | |
y_true[:, c_t], K.floatx())) | |
return K.categorical_crossentropy(y_pred, y_true) * final_mask | |
w_array = np.ones((10, 10)) | |
w_array[1, 7] = 1.2 | |
w_array[7, 1] = 1.2 | |
ncce = partial(w_categorical_crossentropy, weights=w_array) | |
ncce.__name__ = 'w_categorical_crossentropy' | |
batch_size = 128 | |
nb_classes = 10 | |
nb_epoch = 20 | |
# the data, shuffled and split between train and test sets | |
(X_train, y_train), (X_test, y_test) = mnist.load_data() | |
X_train = X_train.reshape(60000, 784) | |
X_test = X_test.reshape(10000, 784) | |
X_train = X_train.astype('float32') | |
X_test = X_test.astype('float32') | |
X_train /= 255 | |
X_test /= 255 | |
print(X_train.shape[0], 'train samples') | |
print(X_test.shape[0], 'test samples') | |
# convert class vectors to binary class matrices | |
Y_train = np_utils.to_categorical(y_train, nb_classes) | |
Y_test = np_utils.to_categorical(y_test, nb_classes) | |
model = Sequential() | |
model.add(Dense(512, input_shape=(784, ))) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.2)) | |
model.add(Dense(512)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.2)) | |
model.add(Dense(10)) | |
model.add(Activation('softmax')) | |
rms = RMSprop() | |
model.compile(loss=ncce, optimizer=rms) | |
model.fit( | |
X_train, | |
Y_train, | |
batch_size=batch_size, | |
epochs=nb_epoch, | |
verbose=1, | |
validation_data=(X_test, Y_test)) | |
score = model.evaluate(X_test, Y_test, verbose=1) | |
print(score) | |
print('Test score:', score[0]) | |
print('Test accuracy:', score[1]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment