Skip to content

Instantly share code, notes, and snippets.

@davfre
davfre / bamfilter_oneliners.md
Last active August 4, 2024 03:10
SAM and BAM filtering oneliners
@stephenturner
stephenturner / deseq2-analysis-template.R
Created July 30, 2014 12:20
Template for analysis with DESeq2
## RNA-seq analysis with DESeq2
## Stephen Turner, @genetics_blog
# RNA-seq data from GSE52202
# http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse52202. All patients with
# ALS, 4 with C9 expansion ("exp"), 4 controls without expansion ("ctl")
# Import & pre-process ----------------------------------------------------
# Import data from featureCounts
@slowkow
slowkow / counts_to_tpm.R
Last active October 8, 2024 02:00
Convert read counts to transcripts per million (TPM).
#' Convert counts to transcripts per million (TPM).
#'
#' Convert a numeric matrix of features (rows) and conditions (columns) with
#' raw feature counts to transcripts per million.
#'
#' Lior Pachter. Models for transcript quantification from RNA-Seq.
#' arXiv:1104.3889v2
#'
#' Wagner, et al. Measurement of mRNA abundance using RNA-seq data:
#' RPKM measure is inconsistent among samples. Theory Biosci. 24 July 2012.
#!/bin/bash
# function Extract for common file formats
function extract {
if [ -z "$1" ]; then
# display usage if no parameters given
echo "Usage: extract <path/file_name>.<zip|rar|bz2|gz|tar|tbz2|tgz|Z|7z|xz|ex|tar.bz2|tar.gz|tar.xz>"
else
if [ -f "$1" ] ; then
NAME=${1%.*}

This list is outdated. This post has a list of bioinformatics/genomics/genetics workshops and training materials that I haven't updated since 2015.


In-person courses

Note that many of the courses shown below also have course materials from past years publicly available online.

Cold Spring Harbor Courses:

library(ggplot2)
# plot volcano plot
res <- read.table("Male_vs_Female_Pre", head=TRUE)
res$Significant <- ifelse(res$adj.P.Val < 0.05, "adj.P.Val < 0.05", "Not Significant")
ggplot(res, aes(x = logFC, y = -log10(P.Value))) +
geom_point(aes(color = Significant)) +
scale_color_manual(values = c("red", "grey")) +
theme_bw(base_size = 12) + theme(legend.position = "bottom") +
geom_text_repel(