Created
April 13, 2020 06:44
-
-
Save qqaatw/7af07b93a51fc34d26399adcffec752e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" Recurrent Neural Network. | |
A Recurrent Neural Network (LSTM) implementation example using TensorFlow library. | |
This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) | |
Links: | |
[Long Short Term Memory](http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf) | |
[MNIST Dataset](http://yann.lecun.com/exdb/mnist/). | |
Author: Aymeric Damien | |
Project: https://github.com/aymericdamien/TensorFlow-Examples/ | |
""" | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.contrib import rnn | |
# Training Parameters | |
EPOCHS = 5000 | |
LEARNING_RATE = 0.0005 | |
#training_steps = 10000 | |
BATCH_SIZE = 128 # the number of samples that will be propagated through the network. | |
#display_step = 200 | |
# Network Parameters | |
#init_scale = 0.05 | |
#hidden_size = 300 | |
#vocab_size = X_Train.shape[2] | |
#num_input = 1 # MNIST data input (img shape: 28*28) | |
#timesteps = 5 # timesteps | |
#num_hidden = 128 # hidden layer num of features | |
#num_classes = 5 # MNIST total classes (0-9 digits) | |
# tf Graph input | |
#X = tf.placeholder("float", [None, timesteps, num_input]) | |
#Y = tf.placeholder("float", [None, num_classes]) | |
# tf state | |
#cell_state = tf.placeholder(tf.float32, [batch_size, state_size]) | |
#hidden_state = tf.placeholder(tf.float32, [batch_size, state_size]) | |
#init_state = tf.nn.rnn_cell.LSTMStateTuple(cell_state, hidden_state) | |
def test(): | |
# BATCHING | |
BATCH_SIZE = 4 | |
#x = np.random.sample((100, 2)) | |
x = np.arange(100) | |
x = x.reshape((50,2)) | |
# make a dataset from a numpy array | |
x_ph = tf.placeholder(tf.int32, shape=(50, 2)) | |
dataset = tf.data.Dataset.from_tensor_slices(x_ph).batch(BATCH_SIZE).repeat() | |
iterr = dataset.make_initializable_iterator() | |
with tf.Session() as sess: | |
sess.run(iterr.initializer, feed_dict={x_ph: x}) | |
for k in range(int(np.ceil(len(x)/BATCH_SIZE))): | |
el = iterr.get_next() | |
print(sess.run(el)) | |
def buildLayers(modelname, X_Train, X_Test, Y_Train, Y_Test, valid_length_train, fold, TimeSteps=100): | |
def preparing_data(): | |
X_train = np.array(X_Train[fold]) | |
Y_train = np.array(Y_Train[fold], dtype=np.float) | |
Y_train = Y_train * 0.2 - 0.1 # 0.1 / 0.3 / 0.5 / 0.7 / 0.9 | |
print(X_train.shape, Y_train.shape) | |
X_test = np.array(X_Test[fold]) | |
Y_test = np.array(Y_Test[fold], dtype=np.int32) | |
print(X_test.shape, Y_test.shape) | |
#X_tuning = np.array(X_Tuning[fold]) | |
#Y_tuning = np.array(Y_Tuning[fold], dtype=np.float) | |
#Y_tuning = Y_tuning * 0.2 - 0.1 | |
VL_train = np.array(valid_length_train[fold]) | |
VL_train = VL_train.flatten() | |
print(VL_train.shape) | |
return X_train, Y_train, VL_train | |
tf.reset_default_graph() | |
X_placeholder = tf.placeholder(tf.float32, shape=[None, TimeSteps, 300]) | |
Y_placeholder = tf.placeholder(tf.float32, shape=[None, 1]) | |
VL_placeholder = tf.placeholder(tf.int64, shape=[None]) | |
batch_placeholder = tf.placeholder(tf.int64) | |
train_dataset = tf.data.Dataset.from_tensor_slices( | |
(X_placeholder, Y_placeholder, VL_placeholder)).batch(batch_placeholder).repeat() | |
train_iter = train_dataset.make_initializable_iterator() | |
train_init_op = train_iter.make_initializer(train_dataset) | |
x, y, vl = train_iter.get_next() | |
#x = tf.unstack(x, 100, 1) # (batch_size, n_steps, n_input) to (batch_size, n_input) | |
num_layers = 2 | |
state_size = 300 | |
#lstm_init_state = init_state = tf.placeholder(tf.float32, [num_layers, 2, None, state_size]) # None is for batch_size | |
#state_per_layer_list = tf.unstack(lstm_init_state, axis=0) | |
with tf.device('/gpu:0'): | |
''' | |
lstm_cell1 = tf.contrib.cudnn_rnn.CudnnCompatibleLSTMCell(100) | |
lstm_cell2 = tf.contrib.cudnn_rnn.CudnnCompatibleLSTMCell(50) | |
lstm_cell1_dropout = tf.nn.rnn_cell.DropoutWrapper( | |
lstm_cell1, input_keep_prob=0.8) | |
lstm_cell2_dropout = tf.nn.rnn_cell.DropoutWrapper( | |
lstm_cell2, input_keep_prob=0.8) | |
cells = tf.nn.rnn_cell.MultiRNNCell([lstm_cell1_dropout, lstm_cell2_dropout], state_is_tuple=True) | |
#init_state = cells.zero_state(None, tf.float32) | |
lstm_outputs, lstm_state = tf.nn.dynamic_rnn( | |
cells, x, sequence_length=None, parallel_iterations=128, time_major=False, dtype=tf.float32) | |
''' | |
lstm = tf.contrib.cudnn_rnn.CudnnLSTM(num_layers=2, num_units=100) | |
lstm_outputs, lstm_state = lstm(x, training=True) | |
dense1 = tf.contrib.layers.fully_connected( | |
lstm_outputs[:,-1,:], 10, activation_fn=tf.nn.leaky_relu) | |
dropout1 = tf.nn.dropout(dense1, rate=0.2) | |
dense2 = tf.contrib.layers.fully_connected(dropout1, 5, activation_fn=tf.nn.leaky_relu) | |
dropout2 = tf.nn.dropout(dense2, rate=0.2) | |
dense3 = tf.contrib.layers.fully_connected(dropout2, 1, activation_fn=tf.nn.leaky_relu) | |
loss = tf.losses.mean_squared_error(dense3, y) | |
optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(loss) | |
saver = tf.train.Saver() | |
history = {"loss": []} | |
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: | |
X_train, Y_train, VL_train = preparing_data() | |
best_loss = 10.0 | |
n_batches = int(np.ceil(len(X_train) / BATCH_SIZE)) | |
sess.run(tf.global_variables_initializer()) | |
sess.run(train_init_op, feed_dict={ | |
X_placeholder: X_train, Y_placeholder: Y_train, batch_placeholder: BATCH_SIZE, VL_placeholder: VL_train}) | |
print('Training...') | |
for ep in range(EPOCHS): | |
tot_loss = 0 | |
for i in range(n_batches): | |
tot_loss = 0 | |
_, loss_value = sess.run([optimizer, loss], feed_dict={ | |
X_placeholder: X_train, Y_placeholder: Y_train, batch_placeholder: BATCH_SIZE, VL_placeholder: VL_train}) | |
tot_loss += loss_value | |
print("Epoch: {}, Loss: {:.4f}".format(ep, tot_loss)) | |
if tot_loss < best_loss: | |
best_loss = tot_loss | |
saver.save(sess, '{}best-{}-model.ckpt'.format(modelname, str(fold))) | |
history['loss'].append(tot_loss) | |
saver.save(sess, '{}{}-model.ckpt'.format(modelname, str(fold))) | |
def main(): | |
pass | |
if __name__ == "__main__": | |
test() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment