Last active
October 9, 2024 10:48
-
-
Save qsobad/8e244e636cd64d168d1c832807b558a9 to your computer and use it in GitHub Desktop.
3D DDA: fast ray voxel traversal, pytorch batch version (has not test with every cases, use with causion)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def voxel_traversal(rays, _bin_size): | |
| # rays.shape (N_rays, 8): origin(3) direction(3), smallest t(1), largest t(1) | |
| # _bin_size scaler | |
| # return: (N_rays, Max_steps, 3) | |
| rays_o, rays_d, near, far = rays[:, :3], rays[:, 3:6], rays[:, 6:7], rays[:, 7:8] | |
| _bin_size = float(_bin_size) | |
| voxel_visited = [] | |
| ray_start = rays_o + torch.mul(rays_d, near) | |
| ray_end = rays_o + torch.mul(rays_d, far) | |
| current_voxel = torch.floor_divide(ray_start, _bin_size) | |
| last_voxel = torch.floor_divide(ray_end, _bin_size) | |
| step = torch.ones_like(rays_d) | |
| step[rays_d < 0] = -1 | |
| next_voxel_boundary = torch.mul((current_voxel + step), _bin_size) | |
| tMax = torch.true_divide((next_voxel_boundary - ray_start), rays_d) | |
| tMax[rays_d == 0] = float('inf') # max double | |
| tDelta = torch.true_divide(torch.mul(step, _bin_size), rays_d) | |
| tDelta[rays_d == 0] = float('inf') # max double | |
| diff = torch.zeros_like(rays_d) | |
| mask = torch.logical_and((current_voxel != last_voxel), (rays_d < 0)) | |
| diff[mask] -= 1 | |
| voxel_visited += [torch.clone(current_voxel)] | |
| def get_maskt(current_voxel, last_voxel): | |
| test0 = torch.logical_and((current_voxel[:, 0] == current_voxel[:, 0]), (torch.mul(step[:, 0], current_voxel[:, 0]) < torch.mul(step[:, 0], last_voxel[:, 0]))) # not null and not equal to last voxel | |
| test1 = torch.logical_and((current_voxel[:, 1] == current_voxel[:, 1]), (torch.mul(step[:, 1], current_voxel[:, 1]) < torch.mul(step[:, 1], last_voxel[:, 1]))) | |
| test2 = torch.logical_and((current_voxel[:, 2] == current_voxel[:, 2]), (torch.mul(step[:, 2], current_voxel[:, 2]) < torch.mul(step[:, 2], last_voxel[:, 2]))) | |
| maskt = torch.logical_or(test0, torch.logical_or(test1, test2)) # true if xyz is different | |
| return maskt | |
| maskt = get_maskt(current_voxel, last_voxel) | |
| i = 0 | |
| while torch.any(maskt): | |
| mask11 = torch.logical_and((tMax[:, 0] < tMax[:, 1]), (tMax[:, 0] < tMax[:, 2])) # X | |
| mask12 = torch.logical_and((tMax[:, 1] <= tMax[:, 0]), (tMax[:, 1] < tMax[:, 2])) # Y | |
| mask13 = torch.logical_and((tMax[:, 0] >= tMax[:, 1]), (tMax[:, 1] >= tMax[:, 2])) # Z | |
| mask14 = torch.logical_and((tMax[:, 0] >= tMax[:, 2]), (tMax[:, 1] > tMax[:, 0])) # Z | |
| maskx = mask11 | |
| masky = mask12 | |
| maskz = torch.logical_or(mask13, mask14) | |
| maskx = torch.logical_and(maskt, maskx) | |
| if torch.any(maskx): | |
| current_voxel[:, 0][maskx] += step[:, 0][maskx] | |
| tMax[:, 0][maskx] += tDelta[:, 0][maskx] | |
| masky = torch.logical_and(maskt, masky) | |
| if torch.any(masky): | |
| current_voxel[:, 1][masky] += step[:, 1][masky] | |
| tMax[:, 1][masky] += tDelta[:, 1][masky] | |
| maskz = torch.logical_and(maskt, maskz) | |
| if torch.any(maskz): | |
| current_voxel[:, 2][maskz] += step[:, 2][maskz] | |
| tMax[:, 2][maskz] += tDelta[:, 2][maskz] | |
| voxel_visited += [torch.clone(current_voxel)] | |
| maskt = get_maskt(current_voxel, last_voxel) | |
| current_voxel[torch.logical_not(maskt)] = float('nan') | |
| i += 1 | |
| voxel_visited = torch.stack(voxel_visited).permute(1,0,2) | |
| return voxel_visited |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment