-
-
Save quag/d0081f972faae5a1ccd6a2a37bc51d46 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Sample output: | |
``` | |
range: 19.7 → 30.9 | |
mean: 25.06 | |
19.6 (0.0%) | |
20.0 (0.1%) | |
20.4 █ (0.1%) | |
20.8 ███ (0.4%) | |
21.2 ████ (0.6%) | |
21.6 ████████ (1.2%) | |
22.0 █████████████ (2.0%) | |
22.4 ████████████████████ (2.9%) | |
22.8 ████████████████████████████ (4.1%) | |
23.2 ████████████████████████████████████████ (5.8%) | |
23.6 ████████████████████████████████████████████████ (7.0%) | |
24.0 ████████████████████████████████████████████████████████████ (8.7%) | |
24.4 ███████████████████████████████████████████████████████████████████ (9.8%) | |
24.8 ██████████████████████████████████████████████████████████████████████ (10.2%) | |
25.2 ████████████████████████████████████████████████████████████████ (9.4%) | |
25.6 █████████████████████████████████████████████████████████████ (8.9%) | |
26.0 ███████████████████████████████████████████████████████ (8.0%) | |
26.4 ████████████████████████████████████████████ (6.4%) | |
26.8 ████████████████████████████████████ (5.3%) | |
27.2 ███████████████████████ (3.4%) | |
27.6 █████████████████ (2.4%) | |
28.0 ██████████ (1.5%) | |
28.4 ██████ (0.9%) | |
28.8 ████ (0.6%) | |
29.2 ██ (0.3%) | |
29.6 █ (0.1%) | |
30.0 (0.0%) | |
30.4 (0.0%) | |
30.8 (0.0%) | |
Questions: 0.1/0.1, 0.1/0.3, 0.1/0.7, 0.1/0.9, 0.2/0.2, 0.2/0.5, 0.2/0.6, 0.2/0.8, 0.4/0.5, 0.1/0.3/1.0, 0.1/0.6/0.9, 0.2/0.3/0.5, 0.2/0.3/0.8, 0.3/0.4/0.5, 0.3/0.4/0.9, 0.3/0.5/0.9, 0.3/0.7/0.8, 0.3/0.8/1.0, 0.4/0.5/0.7, 0.4/0.7/0.8, 0.4/0.8/0.9, 0.5/0.7/0.8, 0.5/0.9/1.0, 0.6/0.6/1.0, 0.9/0.9/0.9, 0.2/0.2/0.9/0.9, 0.2/0.3/0.5/0.7, 0.2/0.4/0.7/0.7, 0.2/0.5/0.5/0.6, 0.2/0.5/0.7/0.7, 0.3/0.3/0.4/0.9, 0.3/0.4/0.9/1.0, 0.6/0.6/0.7/0.8, 0.6/0.6/0.7/1.0, 0.1/0.1/0.4/0.6/0.9, 0.1/0.2/0.3/0.6/1.0, 0.1/0.5/0.6/0.8/1.0, 0.1/0.6/0.7/0.8/0.9, 0.1/0.7/0.7/0.9/0.9, 0.2/0.2/0.4/0.7/0.9, 0.2/0.3/0.3/0.4/0.8, 0.2/0.5/0.9/1.0/1.0, 0.3/0.3/0.6/0.6/0.9, 0.3/0.5/0.5/0.6/0.8, 0.4/0.4/0.4/0.7/1.0, 0.5/0.6/0.7/0.9/1.0, 0.7/0.7/0.7/0.8/0.8 | |
``` | |
""" | |
import random | |
import math | |
import collections | |
QUESTIONS = [ | |
(0.3, 0.5, 0.5, 0.6, 0.8), | |
(0.3, 0.4, 0.9, 1.0), | |
(0.4, 0.7, 0.8), | |
(0.6, 0.6, 0.7, 1.0), | |
(0.4, 0.8, 0.9), | |
(0.2, 0.5, 0.5, 0.6), | |
(0.5, 0.9, 1.0), | |
(0.2, 0.2, 0.9, 0.9), | |
(0.7, 0.7, 0.7, 0.8, 0.8), | |
(0.3, 0.3, 0.4, 0.9), | |
(0.3, 0.8, 1.0), | |
(0.2, 0.5, 0.9, 1.0, 1.0), | |
(0.6, 0.6, 0.7, 0.8), | |
(0.6, 0.6, 1.0), | |
(0.2, 0.3, 0.3, 0.4, 0.8), | |
(0.1, 0.3, 1.0), | |
(0.2, 0.8), | |
(0.9, 0.9, 0.9), | |
(0.3, 0.3, 0.6, 0.6, 0.9), | |
(0.5, 0.6, 0.7, 0.9, 1.0), | |
(0.2, 0.5, 0.7, 0.7), | |
(0.2, 0.3, 0.8), | |
(0.3, 0.4, 0.5), | |
(0.2, 0.2), | |
(0.1, 0.6, 0.9), | |
(0.1, 0.7), | |
(0.4, 0.5), | |
(0.1, 0.1), | |
(0.5, 0.7, 0.8), | |
(0.1, 0.9), | |
(0.2, 0.2, 0.4, 0.7, 0.9), | |
(0.1, 0.2, 0.3, 0.6, 1.0), | |
(0.3, 0.5, 0.9), | |
(0.3, 0.7, 0.8), | |
(0.3, 0.4, 0.9), | |
(0.1, 0.7, 0.7, 0.9, 0.9), | |
(0.2, 0.4, 0.7, 0.7), | |
(0.2, 0.5), | |
(0.2, 0.6), | |
(0.4, 0.4, 0.4, 0.7, 1.0), | |
(0.4, 0.5, 0.7), | |
(0.1, 0.3), | |
(0.2, 0.3, 0.5, 0.7), | |
(0.1, 0.6, 0.7, 0.8, 0.9), | |
(0.2, 0.3, 0.5), | |
(0.1, 0.1, 0.4, 0.6, 0.9), | |
(0.1, 0.5, 0.6, 0.8, 1.0), | |
] | |
def generateQuestions(rng): | |
questions = [] | |
for i in range(rng.randint(20, 50)): | |
n = rng.randint(2, 5) | |
answerWeights = [round(mix(0.1, 1, rng.random()), 1) for j in range(n)] | |
question = tuple(sorted(answerWeights)) | |
questions.append(question) | |
return questions | |
def sampleSurvey(questions: list[tuple[float]], rng) -> int: | |
total: int = 0 | |
for answerWeights in questions: | |
weight = rng.choice(answerWeights) | |
score = fixedWidth(weight) | |
total += score | |
return total | |
def sampleSurveys(questions, n, rng) -> list[float]: | |
samples = [] | |
for i in range(n): | |
sample = sampleSurvey(questions, rng) | |
samples.append(sample) | |
return samples | |
def printHistogram(samples, approxLines=20): | |
p0 = min(samples) | |
p100 = max(samples) | |
mean = round(sum(samples) / len(samples), 1) | |
print( | |
f"range: {coFixedWidth(p0)} → {coFixedWidth(p100)}\nmean: {coFixedWidth(mean)}\n" | |
) | |
bucketWidth = sigfig((p100 - p0) / approxLines, 1) | |
counts = collections.Counter(quantize(bucketWidth, x) for x in samples) | |
largest = counts.most_common(1)[0][1] | |
maxBarLength = 70 | |
for bucket, count in sorted(counts.items()): | |
barLength = round(mix(0, maxBarLength, coMix(0, largest, count))) | |
print( | |
coFixedWidth(bucket), | |
"█" * barLength, | |
f" ({round(100 * count / len(samples), 1)}%)", | |
) | |
def fixedWidth(x: float) -> int: | |
return int(x * 1000) | |
def coFixedWidth(x: int) -> int: | |
return round(x / 1000, 2) | |
def mix(e0, e1, x): | |
return x * (e1 - e0) + e0 | |
def coMix(e0, e1, y): | |
return (y - e0) / (e1 - e0) | |
def sigfig(x, sig=2): | |
return round(x, sig - int(math.floor(math.log10(abs(x)))) - 1) | |
def quantize(quantum, x): | |
return math.trunc(x / quantum) * quantum | |
def main(): | |
rng = random.Random(0) | |
if False: | |
questions = generateQuestions(rng) | |
print(questions) | |
else: | |
questions = QUESTIONS | |
samples = sampleSurveys(questions, 10000, rng) | |
printHistogram(samples, 30) | |
print("\nQuestions: ", end="") | |
print( | |
", ".join( | |
sorted( | |
["/".join(str(y) for y in x) for x in questions], | |
key=lambda z: (len(z), z), | |
) | |
) | |
) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment