Created
August 28, 2024 20:35
-
-
Save quantra-go-algo/4e8a030f6bf2e36df276d35b54560130 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Create the VAR-based equally-weighted portfolio returns | |
df_forecasts$var_stra_returns <- rowMeans((df_forecasts[,match(tickers,colnames(df_forecasts))] * | |
df_forecasts[,match(ticker_var_forecasts,colnames(df_forecasts))]), | |
na.rm=TRUE) | |
# Set the NaN values of the strategy returns to zero | |
df_forecasts$var_stra_returns[is.na(df_forecasts$var_stra_returns)] = 0.0 | |
# Create the strategy cumulative returns | |
df_forecasts$var_stra_cum_returns <- exp(cumsum(df_forecasts$var_stra_returns)) | |
# Create the TVP-VAR-SV-based equally-weighted portfolio returns | |
df_forecasts$tvp_var_sv_stra_returns <- rowMeans((df_forecasts[,match(tickers,colnames(df_forecasts))] * | |
df_forecasts[,match(ticker_tvp_var_forecasts,colnames(df_forecasts))]), | |
na.rm=TRUE) | |
# Set the NaN values of the TVP-VAR-SV strategy returns to zero | |
df_forecasts$tvp_var_sv_stra_returns[is.na(df_forecasts$tvp_var_sv_stra_returns)] = 0.0 | |
# Create the TVP-VAR-SV strategy cumulative returns | |
df_forecasts$tvp_var_sv_stra_cum_returns <- exp(cumsum(df_forecasts$tvp_var_sv_stra_returns)) | |
# Create the equally-weighted benchmark portfolio returns | |
df_forecasts$bnh_returns <- rowMeans(df_forecasts[,match(tickers,colnames(df_forecasts))]) | |
# Create the equally-weighted benchmark portfolio cumulative returns | |
df_forecasts$bnh_cum_returns <- exp(cumsum(df_forecasts$bnh_returns)) | |
# Convert the date column in date type | |
df_forecasts$date <- as.Date(df_forecasts$date) | |
# Create a 15-day moving average long signal | |
df_forecasts$ma_signal <- ifelse(df_forecasts$bnh_cum_returns>rollapply(df_forecasts$bnh_cum_returns,15,mean,fill=1,align='right'),1,0) | |
# Buy the assets only when the VAR predict a positive return and the 200-day moving average signal is long too | |
df_forecasts$stra_improved_returns <- c(0,df_forecasts$ma_signal[-length(df_forecasts$ma_signal)]*df_forecasts$tvp_var_sv_stra_returns[-1]) | |
# Compute the improved strategy returns | |
df_forecasts$stra_improved_cum_returns <- exp(cumsum(df_forecasts$stra_improved_returns)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment