Created
December 30, 2019 22:24
-
-
Save quickgrid/2f0c61653ed996766b89c420324f735b to your computer and use it in GitHub Desktop.
CIFAR10 image classification using CNN with pytorch gpu. This is a simple network and accuracy reaches to 77% on 10 epochs.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
torch.manual_seed(0) | |
import numpy as np | |
np.random.seed(0) | |
import random | |
random.seed(0) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
#torch.cudnn.benchmark = True | |
#torch.cudnn.enabled = True | |
import torchvision | |
import torchvision.transforms as transforms | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
if __name__ == '__main__': | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
print(device) | |
transform = transforms.Compose( | |
[transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, | |
download=True, transform=transform) | |
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, | |
shuffle=True, num_workers=4) | |
testset = torchvision.datasets.CIFAR10(root='./data', train=False, | |
download=True, transform=transform) | |
testloader = torch.utils.data.DataLoader(testset, batch_size=4, | |
shuffle=False, num_workers=4) | |
classes = ('plane', 'car', 'bird', 'cat', | |
'deer', 'dog', 'frog', 'horse', 'ship', 'truck') | |
l1 = 64 | |
l2 = 128 | |
l3 = 256 | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
# input channel, output filter, kernel size | |
self.conv1 = nn.Conv2d(3, l1, 5, padding=2) | |
self.conv2 = nn.Conv2d(l1, l2, 5, padding=2) | |
self.conv3 = nn.Conv2d(l2, l3, 3) | |
self.BatchNorm2d1 = nn.BatchNorm2d(l1) | |
self.BatchNorm2d2 = nn.BatchNorm2d(l2) | |
self.BatchNorm2d3 = nn.BatchNorm2d(l3) | |
self.BatchNorm2d4 = nn.BatchNorm2d(120) | |
self.pool = nn.MaxPool2d(2, 2) | |
self.dropout = nn.Dropout(p=0) | |
self.fc1 = nn.Linear(l3 * 3 * 3, 120) | |
self.fc2 = nn.Linear(120, 84) | |
self.fc3 = nn.Linear(84, 10) | |
def forward(self, x): | |
x = self.BatchNorm2d1(self.pool(F.leaky_relu(self.conv1(x)))) | |
x = self.BatchNorm2d2(self.pool(F.leaky_relu(self.conv2(x)))) | |
x = self.BatchNorm2d3(self.pool(F.leaky_relu(self.conv3(x)))) | |
x = x.view(-1, l3 * 3 * 3) | |
x = self.dropout(F.leaky_relu(self.fc1(x))) | |
x = self.dropout(F.leaky_relu(self.fc2(x))) | |
#x = self.dropout(F.leaky_relu(self.fc4(x))) | |
x = self.fc3(x) | |
return x | |
net = Net() | |
net = net.to(device) | |
print(net) | |
criterion = nn.CrossEntropyLoss() | |
#optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) | |
#optimizer = optim.Adam(net.parameters(), lr=0.001) | |
optimizer = optim.Adam(net.parameters(), lr=0.001) | |
def main(): | |
for epoch in range(5): | |
running_loss = 0.0 | |
for i, data in enumerate(trainloader, 0): | |
inputs, labels = data | |
inputs, labels = inputs.to(device), labels.to(device) | |
optimizer.zero_grad() | |
outputs = net(inputs) | |
loss = criterion(outputs, labels) | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
if i % 2000 == 1999: | |
print('[%d, %5d] loss: %.3f' % | |
(epoch + 1, i + 1, running_loss / 2000)) | |
running_loss = 0.0 | |
print('Finished Training') | |
dataiter = iter(testloader) | |
images, labels = dataiter.next() | |
images, labels = images.to(device), labels.to(device) | |
print('Ground truth: ', ' '.join('%5s' % classes[labels[j]] for j in | |
range(4))) | |
outputs = net(images) | |
_, predicted = torch.max(outputs, 1) | |
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] | |
for j in range(4))) | |
correct = 0 | |
total = 0 | |
with torch.no_grad(): | |
for data in testloader: | |
images, labels = data | |
images, labels = images.to(device), labels.to(device) | |
outputs = net(images) | |
_, predicted = torch.max(outputs.data, 1) | |
total += labels.size(0) | |
correct += (predicted == labels).sum().item() | |
print('Accuracy of the network on the 10000 test images: %d %%' % ( | |
100 * correct / total)) | |
class_correct = list(0. for i in range(10)) | |
class_total = list(0. for i in range(10)) | |
with torch.no_grad(): | |
for data in testloader: | |
images, labels = data | |
images, labels = images.to(device), labels.to(device) | |
outputs = net(images) | |
_, predicted = torch.max(outputs, 1) | |
c = (predicted == labels).squeeze() | |
for i in range(4): | |
label = labels[i] | |
class_correct[label] += c[i].item() | |
class_total[label] += 1 | |
for i in range(10): | |
print('Accuracy of %5s : %2d %%' % ( | |
classes[i], 100 * class_correct[i] / class_total[i])) | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment