Created
February 16, 2017 14:26
-
-
Save quq99/ebfe42565eb05d54e758308b2486e3c0 to your computer and use it in GitHub Desktop.
CEM algorithm for CartPole-v0
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import gym | |
from gym.spaces import Discrete, Box | |
from gym import wrappers | |
#=================================== | |
#Polices | |
#================================== | |
class DeterministicDiscreteActionLinearPolicy(object): | |
def __init__(self, theta, ob_space, ac_space): | |
""" | |
dim_ob: dimension of observations | |
n_actions: number of actions | |
theta: flat vector of parameters | |
""" | |
dim_ob = ob_space.shape[0] | |
n_actions = ac_space.n | |
assert len(theta) == (dim_ob + 1) * n_actions | |
self.W = theta[0: dim_ob * n_actions].reshape(dim_ob, n_actions) | |
self.b = theta[dim_ob * n_actions : None].reshape(1,n_actions) | |
def act(self, ob): | |
""" | |
""" | |
y = ob.dot(self.W) + self.b | |
a = y.argmax() | |
return a | |
class DeterministicContinuousActionLinerPolicy(object): | |
def __init__(self, theta, ob_space, ac_space): | |
""" | |
dim_ob: dimension of observations | |
dim_ac: dimension of action vector | |
theta: flat vector of parameters | |
""" | |
self.ac_space = ac_space | |
dim_ob = ob_space.shape[0] | |
dim_ac = ac_space.shape[0] | |
assert len(theta) == (dim_ob + 1) * dim_ac | |
self.W = theta[0 : dim_ob * dim_ac].reshape(dim_ob, dim_ac) | |
self.b = theta[dim_ob * dim_ac : None] | |
def act(self, ob): | |
a = np.clip(ob.dot(self.W) + self.b, self.ac_space.low, self.ac_space.high) | |
return a | |
def do_episode(policy, env, num_steps, render=False): | |
total_rew = 0 | |
ob = env.reset() | |
for t in range(num_steps): | |
a = policy.act(ob) | |
(ob, reward, done, _info) = env.step(a) | |
total_rew += reward | |
if render and t%3==0: env.render() | |
if done: break | |
return total_rew | |
env = None | |
def noisy_evaluation(theta): | |
policy = make_policy(theta) | |
rew = do_episode(policy, env, num_steps) | |
return rew | |
def make_policy(theta): | |
if isinstance(env.action_space, Discrete): | |
return DeterministicDiscreteActionLinearPolicy(theta, env.observation_space, env.action_space) | |
elif isinstance(env.action_space, Box): | |
return DeterministicContimuousActionLinearPolicy(theta,env.observation_space, env.action_space) | |
else: | |
raise NotImplementedError | |
#task settings: | |
env = gym.make('CartPole-v0')#change as needed | |
env = wrappers.Monitor(env, "./tmp/CartPole-v0-experiment-1") | |
num_steps = 500#maximum length of episode | |
#alg settings: | |
n_iter = 100# number of iterations of CEM | |
batch_size = 25# number of samples per batch | |
elite_frac = 0.2# fraction of samples used as elite set | |
if isinstance(env.action_space, Discrete): | |
dim_theta = (env.observation_space.shape[0] + 1) * env.action_space.n | |
elif isinstance(env.action_space, Box): | |
dim_theta = (env.observation_space.shape[0] + 1) * env.action_space.shape[0] | |
else: | |
raise NotImplementedError | |
#Initialize mean and standard deviation | |
theta_mean = np.zeros(dim_theta) | |
theta_std = np.ones(dim_theta) | |
#Now, for the algorithm | |
for iteration in xrange(n_iter): | |
#Sample parameter vectors | |
thetas = np.random.normal(theta_mean, theta_std, (batch_size,dim_theta)) | |
rewards = [noisy_evaluation(theta) for theta in thetas] | |
#get elite parameters | |
n_elite = int(batch_size * elite_frac) | |
elite_inds = np.argsort(rewards)[batch_size - n_elite:batch_size] | |
elite_thetas = [thetas[i] for i in elite_inds] | |
#Update theta_mean, theta_std | |
theta_mean = np.mean(elite_thetas,axis=0) | |
theta_std = np.std(elite_thetas,axis=0) | |
print "iteration %i. mean f: %8.3g. max f: %8.3g" % (iteration,np.mean(rewards),np.max(rewards)) | |
do_episode(make_policy(theta_mean), env, num_steps, render=True) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment