Created
          March 5, 2015 23:48 
        
      - 
      
- 
        Save qwasd1224k/52739dd0d1cf979ba66a to your computer and use it in GitHub Desktop. 
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | import static java.lang.Math.atan; | |
| import static java.lang.Math.cos; | |
| import static java.lang.Math.sin; | |
| public class FFT4g { | |
| private int[] ip; | |
| private double[] w; | |
| private int n; | |
| FFT4g(int n) { | |
| this.n = n; | |
| ip = new int[2+(int)Math.sqrt((double)n/2.0)+1]; | |
| w = new double[n/2]; | |
| ip[0] = 0; | |
| } | |
| public void rdft(int isgn, double[] a) | |
| { | |
| int nw, nc; | |
| double xi; | |
| nw = ip[0]; | |
| if (n > (nw << 2)) { | |
| nw = n >> 2; | |
| makewt(nw); | |
| } | |
| nc = ip[1]; | |
| if (n > (nc << 2)) { | |
| nc = n >> 2; | |
| makect(nc, w, nw); | |
| } | |
| if (isgn >= 0) { | |
| if (n > 4) { | |
| bitrv2(n, a); | |
| cftfsub(a); | |
| rftfsub(a, nc, w, nw); | |
| } else if (n == 4) { | |
| cftfsub(a); | |
| } | |
| xi = a[0] - a[1]; | |
| a[0] += a[1]; | |
| a[1] = xi; | |
| } else { | |
| a[1] = 0.5 * (a[0] - a[1]); | |
| a[0] -= a[1]; | |
| if (n > 4) { | |
| rftbsub(a, nc, w, nw); | |
| bitrv2(n, a); | |
| cftbsub(a); | |
| } else if (n == 4) { | |
| cftfsub(a); | |
| } | |
| } | |
| } | |
| private void makewt(int nw) | |
| { | |
| int j, nwh; | |
| double delta, x, y; | |
| ip[0] = nw; | |
| ip[1] = 1; | |
| if (nw > 2) { | |
| nwh = nw >> 1; | |
| delta = atan(1.0) / nwh; | |
| w[0] = 1; | |
| w[1] = 0; | |
| w[nwh] = cos(delta * nwh); | |
| w[nwh + 1] = w[nwh]; | |
| if (nwh > 2) { | |
| for (j = 2; j < nwh; j += 2) { | |
| x = cos(delta * j); | |
| y = sin(delta * j); | |
| w[j] = x; | |
| w[j + 1] = y; | |
| w[nw - j] = y; | |
| w[nw - j + 1] = x; | |
| } | |
| bitrv2(nw, w); | |
| } | |
| } | |
| } | |
| void makect(int nc, double[] c, int nw) | |
| { | |
| int j, nch; | |
| double delta; | |
| ip[1] = nc; | |
| if (nc > 1) { | |
| nch = nc >> 1; | |
| delta = atan(1.0) / nch; | |
| c[nw + 0] = cos(delta * nch); | |
| c[nw + nch] = 0.5 * c[nw + 0]; | |
| for (j = 1; j < nch; j++) { | |
| c[nw + j] = 0.5 * cos(delta * j); | |
| c[nw + nc - j] = 0.5 * sin(delta * j); | |
| } | |
| } | |
| } | |
| /* -------- child routines -------- */ | |
| private void bitrv2(int n, double[] a) | |
| { | |
| int j, j1, k, k1, l, m, m2; | |
| double xr, xi, yr, yi; | |
| ip[2 + 0] = 0; | |
| l = n; | |
| m = 1; | |
| while ((m << 3) < l) { | |
| l >>= 1; | |
| for (j = 0; j < m; j++) { | |
| ip[2 + m + j] = ip[2 + j] + l; | |
| } | |
| m <<= 1; | |
| } | |
| m2 = 2 * m; | |
| if ((m << 3) == l) { | |
| for (k = 0; k < m; k++) { | |
| for (j = 0; j < k; j++) { | |
| j1 = 2 * j + ip[2 + k]; | |
| k1 = 2 * k + ip[2 + j]; | |
| xr = a[j1]; | |
| xi = a[j1 + 1]; | |
| yr = a[k1]; | |
| yi = a[k1 + 1]; | |
| a[j1] = yr; | |
| a[j1 + 1] = yi; | |
| a[k1] = xr; | |
| a[k1 + 1] = xi; | |
| j1 += m2; | |
| k1 += 2 * m2; | |
| xr = a[j1]; | |
| xi = a[j1 + 1]; | |
| yr = a[k1]; | |
| yi = a[k1 + 1]; | |
| a[j1] = yr; | |
| a[j1 + 1] = yi; | |
| a[k1] = xr; | |
| a[k1 + 1] = xi; | |
| j1 += m2; | |
| k1 -= m2; | |
| xr = a[j1]; | |
| xi = a[j1 + 1]; | |
| yr = a[k1]; | |
| yi = a[k1 + 1]; | |
| a[j1] = yr; | |
| a[j1 + 1] = yi; | |
| a[k1] = xr; | |
| a[k1 + 1] = xi; | |
| j1 += m2; | |
| k1 += 2 * m2; | |
| xr = a[j1]; | |
| xi = a[j1 + 1]; | |
| yr = a[k1]; | |
| yi = a[k1 + 1]; | |
| a[j1] = yr; | |
| a[j1 + 1] = yi; | |
| a[k1] = xr; | |
| a[k1 + 1] = xi; | |
| } | |
| j1 = 2 * k + m2 + ip[2 + k]; | |
| k1 = j1 + m2; | |
| xr = a[j1]; | |
| xi = a[j1 + 1]; | |
| yr = a[k1]; | |
| yi = a[k1 + 1]; | |
| a[j1] = yr; | |
| a[j1 + 1] = yi; | |
| a[k1] = xr; | |
| a[k1 + 1] = xi; | |
| } | |
| } else { | |
| for (k = 1; k < m; k++) { | |
| for (j = 0; j < k; j++) { | |
| j1 = 2 * j + ip[2 + k]; | |
| k1 = 2 * k + ip[2 + j]; | |
| xr = a[j1]; | |
| xi = a[j1 + 1]; | |
| yr = a[k1]; | |
| yi = a[k1 + 1]; | |
| a[j1] = yr; | |
| a[j1 + 1] = yi; | |
| a[k1] = xr; | |
| a[k1 + 1] = xi; | |
| j1 += m2; | |
| k1 += m2; | |
| xr = a[j1]; | |
| xi = a[j1 + 1]; | |
| yr = a[k1]; | |
| yi = a[k1 + 1]; | |
| a[j1] = yr; | |
| a[j1 + 1] = yi; | |
| a[k1] = xr; | |
| a[k1 + 1] = xi; | |
| } | |
| } | |
| } | |
| } | |
| private void rftfsub(double[] a, int nc, double[] c, int nw) | |
| { | |
| int j, k, kk, ks, m; | |
| double wkr, wki, xr, xi, yr, yi; | |
| m = n >> 1; | |
| ks = 2 * nc / m; | |
| kk = 0; | |
| for (j = 2; j < m; j += 2) { | |
| k = n - j; | |
| kk += ks; | |
| wkr = 0.5 - c[nw + nc - kk]; | |
| wki = c[nw + kk]; | |
| xr = a[j] - a[k]; | |
| xi = a[j + 1] + a[k + 1]; | |
| yr = wkr * xr - wki * xi; | |
| yi = wkr * xi + wki * xr; | |
| a[j] -= yr; | |
| a[j + 1] -= yi; | |
| a[k] += yr; | |
| a[k + 1] -= yi; | |
| } | |
| } | |
| private void rftbsub(double[] a, int nc, double[] c, int nw) | |
| { | |
| int j, k, kk, ks, m; | |
| double wkr, wki, xr, xi, yr, yi; | |
| a[1] = -a[1]; | |
| m = n >> 1; | |
| ks = 2 * nc / m; | |
| kk = 0; | |
| for (j = 2; j < m; j += 2) { | |
| k = n - j; | |
| kk += ks; | |
| wkr = 0.5 - c[nw + nc - kk]; | |
| wki = c[nw + kk]; | |
| xr = a[j] - a[k]; | |
| xi = a[j + 1] + a[k + 1]; | |
| yr = wkr * xr + wki * xi; | |
| yi = wkr * xi - wki * xr; | |
| a[j] -= yr; | |
| a[j + 1] = yi - a[j + 1]; | |
| a[k] += yr; | |
| a[k + 1] = yi - a[k + 1]; | |
| } | |
| a[m + 1] = -a[m + 1]; | |
| } | |
| private void cftfsub(double[] a) | |
| { | |
| int j, j1, j2, j3, l; | |
| double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; | |
| l = 2; | |
| if (n > 8) { | |
| cft1st(a); | |
| l = 8; | |
| while ((l << 2) < n) { | |
| cftmdl(l, a); | |
| l <<= 2; | |
| } | |
| } | |
| if ((l << 2) == n) { | |
| for (j = 0; j < l; j += 2) { | |
| j1 = j + l; | |
| j2 = j1 + l; | |
| j3 = j2 + l; | |
| x0r = a[j] + a[j1]; | |
| x0i = a[j + 1] + a[j1 + 1]; | |
| x1r = a[j] - a[j1]; | |
| x1i = a[j + 1] - a[j1 + 1]; | |
| x2r = a[j2] + a[j3]; | |
| x2i = a[j2 + 1] + a[j3 + 1]; | |
| x3r = a[j2] - a[j3]; | |
| x3i = a[j2 + 1] - a[j3 + 1]; | |
| a[j] = x0r + x2r; | |
| a[j + 1] = x0i + x2i; | |
| a[j2] = x0r - x2r; | |
| a[j2 + 1] = x0i - x2i; | |
| a[j1] = x1r - x3i; | |
| a[j1 + 1] = x1i + x3r; | |
| a[j3] = x1r + x3i; | |
| a[j3 + 1] = x1i - x3r; | |
| } | |
| } else { | |
| for (j = 0; j < l; j += 2) { | |
| j1 = j + l; | |
| x0r = a[j] - a[j1]; | |
| x0i = a[j + 1] - a[j1 + 1]; | |
| a[j] += a[j1]; | |
| a[j + 1] += a[j1 + 1]; | |
| a[j1] = x0r; | |
| a[j1 + 1] = x0i; | |
| } | |
| } | |
| } | |
| private void cftbsub(double[] a) | |
| { | |
| int j, j1, j2, j3, l; | |
| double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; | |
| l = 2; | |
| if (n > 8) { | |
| cft1st(a); | |
| l = 8; | |
| while ((l << 2) < n) { | |
| cftmdl(l, a); | |
| l <<= 2; | |
| } | |
| } | |
| if ((l << 2) == n) { | |
| for (j = 0; j < l; j += 2) { | |
| j1 = j + l; | |
| j2 = j1 + l; | |
| j3 = j2 + l; | |
| x0r = a[j] + a[j1]; | |
| x0i = -a[j + 1] - a[j1 + 1]; | |
| x1r = a[j] - a[j1]; | |
| x1i = -a[j + 1] + a[j1 + 1]; | |
| x2r = a[j2] + a[j3]; | |
| x2i = a[j2 + 1] + a[j3 + 1]; | |
| x3r = a[j2] - a[j3]; | |
| x3i = a[j2 + 1] - a[j3 + 1]; | |
| a[j] = x0r + x2r; | |
| a[j + 1] = x0i - x2i; | |
| a[j2] = x0r - x2r; | |
| a[j2 + 1] = x0i + x2i; | |
| a[j1] = x1r - x3i; | |
| a[j1 + 1] = x1i - x3r; | |
| a[j3] = x1r + x3i; | |
| a[j3 + 1] = x1i + x3r; | |
| } | |
| } else { | |
| for (j = 0; j < l; j += 2) { | |
| j1 = j + l; | |
| x0r = a[j] - a[j1]; | |
| x0i = -a[j + 1] + a[j1 + 1]; | |
| a[j] += a[j1]; | |
| a[j + 1] = -a[j + 1] - a[j1 + 1]; | |
| a[j1] = x0r; | |
| a[j1 + 1] = x0i; | |
| } | |
| } | |
| } | |
| private void cft1st(double[] a) | |
| { | |
| int j, k1, k2; | |
| double wk1r, wk1i, wk2r, wk2i, wk3r, wk3i; | |
| double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; | |
| x0r = a[0] + a[2]; | |
| x0i = a[1] + a[3]; | |
| x1r = a[0] - a[2]; | |
| x1i = a[1] - a[3]; | |
| x2r = a[4] + a[6]; | |
| x2i = a[5] + a[7]; | |
| x3r = a[4] - a[6]; | |
| x3i = a[5] - a[7]; | |
| a[0] = x0r + x2r; | |
| a[1] = x0i + x2i; | |
| a[4] = x0r - x2r; | |
| a[5] = x0i - x2i; | |
| a[2] = x1r - x3i; | |
| a[3] = x1i + x3r; | |
| a[6] = x1r + x3i; | |
| a[7] = x1i - x3r; | |
| wk1r = w[2]; | |
| x0r = a[8] + a[10]; | |
| x0i = a[9] + a[11]; | |
| x1r = a[8] - a[10]; | |
| x1i = a[9] - a[11]; | |
| x2r = a[12] + a[14]; | |
| x2i = a[13] + a[15]; | |
| x3r = a[12] - a[14]; | |
| x3i = a[13] - a[15]; | |
| a[8] = x0r + x2r; | |
| a[9] = x0i + x2i; | |
| a[12] = x2i - x0i; | |
| a[13] = x0r - x2r; | |
| x0r = x1r - x3i; | |
| x0i = x1i + x3r; | |
| a[10] = wk1r * (x0r - x0i); | |
| a[11] = wk1r * (x0r + x0i); | |
| x0r = x3i + x1r; | |
| x0i = x3r - x1i; | |
| a[14] = wk1r * (x0i - x0r); | |
| a[15] = wk1r * (x0i + x0r); | |
| k1 = 0; | |
| for (j = 16; j < n; j += 16) { | |
| k1 += 2; | |
| k2 = 2 * k1; | |
| wk2r = w[k1]; | |
| wk2i = w[k1 + 1]; | |
| wk1r = w[k2]; | |
| wk1i = w[k2 + 1]; | |
| wk3r = wk1r - 2 * wk2i * wk1i; | |
| wk3i = 2 * wk2i * wk1r - wk1i; | |
| x0r = a[j] + a[j + 2]; | |
| x0i = a[j + 1] + a[j + 3]; | |
| x1r = a[j] - a[j + 2]; | |
| x1i = a[j + 1] - a[j + 3]; | |
| x2r = a[j + 4] + a[j + 6]; | |
| x2i = a[j + 5] + a[j + 7]; | |
| x3r = a[j + 4] - a[j + 6]; | |
| x3i = a[j + 5] - a[j + 7]; | |
| a[j] = x0r + x2r; | |
| a[j + 1] = x0i + x2i; | |
| x0r -= x2r; | |
| x0i -= x2i; | |
| a[j + 4] = wk2r * x0r - wk2i * x0i; | |
| a[j + 5] = wk2r * x0i + wk2i * x0r; | |
| x0r = x1r - x3i; | |
| x0i = x1i + x3r; | |
| a[j + 2] = wk1r * x0r - wk1i * x0i; | |
| a[j + 3] = wk1r * x0i + wk1i * x0r; | |
| x0r = x1r + x3i; | |
| x0i = x1i - x3r; | |
| a[j + 6] = wk3r * x0r - wk3i * x0i; | |
| a[j + 7] = wk3r * x0i + wk3i * x0r; | |
| wk1r = w[k2 + 2]; | |
| wk1i = w[k2 + 3]; | |
| wk3r = wk1r - 2 * wk2r * wk1i; | |
| wk3i = 2 * wk2r * wk1r - wk1i; | |
| x0r = a[j + 8] + a[j + 10]; | |
| x0i = a[j + 9] + a[j + 11]; | |
| x1r = a[j + 8] - a[j + 10]; | |
| x1i = a[j + 9] - a[j + 11]; | |
| x2r = a[j + 12] + a[j + 14]; | |
| x2i = a[j + 13] + a[j + 15]; | |
| x3r = a[j + 12] - a[j + 14]; | |
| x3i = a[j + 13] - a[j + 15]; | |
| a[j + 8] = x0r + x2r; | |
| a[j + 9] = x0i + x2i; | |
| x0r -= x2r; | |
| x0i -= x2i; | |
| a[j + 12] = -wk2i * x0r - wk2r * x0i; | |
| a[j + 13] = -wk2i * x0i + wk2r * x0r; | |
| x0r = x1r - x3i; | |
| x0i = x1i + x3r; | |
| a[j + 10] = wk1r * x0r - wk1i * x0i; | |
| a[j + 11] = wk1r * x0i + wk1i * x0r; | |
| x0r = x1r + x3i; | |
| x0i = x1i - x3r; | |
| a[j + 14] = wk3r * x0r - wk3i * x0i; | |
| a[j + 15] = wk3r * x0i + wk3i * x0r; | |
| } | |
| } | |
| private void cftmdl(int l, double[] a) | |
| { | |
| int j, j1, j2, j3, k, k1, k2, m, m2; | |
| double wk1r, wk1i, wk2r, wk2i, wk3r, wk3i; | |
| double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; | |
| m = l << 2; | |
| for (j = 0; j < l; j += 2) { | |
| j1 = j + l; | |
| j2 = j1 + l; | |
| j3 = j2 + l; | |
| x0r = a[j] + a[j1]; | |
| x0i = a[j + 1] + a[j1 + 1]; | |
| x1r = a[j] - a[j1]; | |
| x1i = a[j + 1] - a[j1 + 1]; | |
| x2r = a[j2] + a[j3]; | |
| x2i = a[j2 + 1] + a[j3 + 1]; | |
| x3r = a[j2] - a[j3]; | |
| x3i = a[j2 + 1] - a[j3 + 1]; | |
| a[j] = x0r + x2r; | |
| a[j + 1] = x0i + x2i; | |
| a[j2] = x0r - x2r; | |
| a[j2 + 1] = x0i - x2i; | |
| a[j1] = x1r - x3i; | |
| a[j1 + 1] = x1i + x3r; | |
| a[j3] = x1r + x3i; | |
| a[j3 + 1] = x1i - x3r; | |
| } | |
| wk1r = w[2]; | |
| for (j = m; j < l + m; j += 2) { | |
| j1 = j + l; | |
| j2 = j1 + l; | |
| j3 = j2 + l; | |
| x0r = a[j] + a[j1]; | |
| x0i = a[j + 1] + a[j1 + 1]; | |
| x1r = a[j] - a[j1]; | |
| x1i = a[j + 1] - a[j1 + 1]; | |
| x2r = a[j2] + a[j3]; | |
| x2i = a[j2 + 1] + a[j3 + 1]; | |
| x3r = a[j2] - a[j3]; | |
| x3i = a[j2 + 1] - a[j3 + 1]; | |
| a[j] = x0r + x2r; | |
| a[j + 1] = x0i + x2i; | |
| a[j2] = x2i - x0i; | |
| a[j2 + 1] = x0r - x2r; | |
| x0r = x1r - x3i; | |
| x0i = x1i + x3r; | |
| a[j1] = wk1r * (x0r - x0i); | |
| a[j1 + 1] = wk1r * (x0r + x0i); | |
| x0r = x3i + x1r; | |
| x0i = x3r - x1i; | |
| a[j3] = wk1r * (x0i - x0r); | |
| a[j3 + 1] = wk1r * (x0i + x0r); | |
| } | |
| k1 = 0; | |
| m2 = 2 * m; | |
| for (k = m2; k < n; k += m2) { | |
| k1 += 2; | |
| k2 = 2 * k1; | |
| wk2r = w[k1]; | |
| wk2i = w[k1 + 1]; | |
| wk1r = w[k2]; | |
| wk1i = w[k2 + 1]; | |
| wk3r = wk1r - 2 * wk2i * wk1i; | |
| wk3i = 2 * wk2i * wk1r - wk1i; | |
| for (j = k; j < l + k; j += 2) { | |
| j1 = j + l; | |
| j2 = j1 + l; | |
| j3 = j2 + l; | |
| x0r = a[j] + a[j1]; | |
| x0i = a[j + 1] + a[j1 + 1]; | |
| x1r = a[j] - a[j1]; | |
| x1i = a[j + 1] - a[j1 + 1]; | |
| x2r = a[j2] + a[j3]; | |
| x2i = a[j2 + 1] + a[j3 + 1]; | |
| x3r = a[j2] - a[j3]; | |
| x3i = a[j2 + 1] - a[j3 + 1]; | |
| a[j] = x0r + x2r; | |
| a[j + 1] = x0i + x2i; | |
| x0r -= x2r; | |
| x0i -= x2i; | |
| a[j2] = wk2r * x0r - wk2i * x0i; | |
| a[j2 + 1] = wk2r * x0i + wk2i * x0r; | |
| x0r = x1r - x3i; | |
| x0i = x1i + x3r; | |
| a[j1] = wk1r * x0r - wk1i * x0i; | |
| a[j1 + 1] = wk1r * x0i + wk1i * x0r; | |
| x0r = x1r + x3i; | |
| x0i = x1i - x3r; | |
| a[j3] = wk3r * x0r - wk3i * x0i; | |
| a[j3 + 1] = wk3r * x0i + wk3i * x0r; | |
| } | |
| wk1r = w[k2 + 2]; | |
| wk1i = w[k2 + 3]; | |
| wk3r = wk1r - 2 * wk2r * wk1i; | |
| wk3i = 2 * wk2r * wk1r - wk1i; | |
| for (j = k + m; j < l + (k + m); j += 2) { | |
| j1 = j + l; | |
| j2 = j1 + l; | |
| j3 = j2 + l; | |
| x0r = a[j] + a[j1]; | |
| x0i = a[j + 1] + a[j1 + 1]; | |
| x1r = a[j] - a[j1]; | |
| x1i = a[j + 1] - a[j1 + 1]; | |
| x2r = a[j2] + a[j3]; | |
| x2i = a[j2 + 1] + a[j3 + 1]; | |
| x3r = a[j2] - a[j3]; | |
| x3i = a[j2 + 1] - a[j3 + 1]; | |
| a[j] = x0r + x2r; | |
| a[j + 1] = x0i + x2i; | |
| x0r -= x2r; | |
| x0i -= x2i; | |
| a[j2] = -wk2i * x0r - wk2r * x0i; | |
| a[j2 + 1] = -wk2i * x0i + wk2r * x0r; | |
| x0r = x1r - x3i; | |
| x0i = x1i + x3r; | |
| a[j1] = wk1r * x0r - wk1i * x0i; | |
| a[j1 + 1] = wk1r * x0i + wk1i * x0r; | |
| x0r = x1r + x3i; | |
| x0i = x1i - x3r; | |
| a[j3] = wk3r * x0r - wk3i * x0i; | |
| a[j3 + 1] = wk3r * x0i + wk3i * x0r; | |
| } | |
| } | |
| } | |
| } | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment