Last active
September 1, 2020 17:19
-
-
Save qweliant/325c7480b15c9fe989b898ae3e2c7119 to your computer and use it in GitHub Desktop.
NLP{ class for modeling
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import ( | |
pipeline, | |
GPT2LMHeadModel, | |
GPT2Tokenizer | |
) | |
class NLP: | |
def __init__(self): | |
self.gen_model = GPT2LMHeadModel.from_pretrained('gpt2') | |
self.gen_tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
def generate(self, prompt="The epistemelogical limit"): | |
inputs = self.gen_tokenizer.encode( prompt, add_special_tokens=False, return_tensors="pt") | |
prompt_length = len(self.gen_tokenizer.decode(inputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)) | |
outputs = self.gen_model.generate(inputs, max_length=200, do_sample=True, top_p=0.95, top_k=60) | |
generated = prompt + self.gen_tokenizer.decode(outputs[0])[prompt_length:] | |
return generated | |
def sentiments(self, text: str): | |
nlp = pipeline("sentiment-analysis") | |
result = nlp(text)[0] | |
return f"label: {result['label']}, with score: {round(result['score'], 4)}" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment