Created
July 22, 2009 19:00
-
-
Save r38y/152193 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# A dictionary of movie critics and their ratings of a small | |
# set of movies | |
critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, | |
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, | |
'The Night Listener': 3.0}, | |
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, | |
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, | |
'You, Me and Dupree': 3.5}, | |
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, | |
'Superman Returns': 3.5, 'The Night Listener': 4.0}, | |
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, | |
'The Night Listener': 4.5, 'Superman Returns': 4.0, | |
'You, Me and Dupree': 2.5}, | |
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, | |
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, | |
'You, Me and Dupree': 2.0}, | |
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, | |
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5}, | |
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}} | |
from math import sqrt | |
# Returns a distance-based similarity score for person1 and person2 | |
def sim_distance(prefs,person1,person2): | |
# Get the list of shared_items | |
si={} | |
for item in prefs[person1]: | |
if item in prefs[person2]: | |
si[item]=1 | |
# if they have no ratings in common, return 0 | |
if len(si)==0: return 0 | |
# Add up the squares of all the differences | |
sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2) | |
for item in prefs[person1] if item in prefs[person2]]) | |
return 1/(1+sum_of_squares) | |
# Returns the Pearson correlation coefficient for p1 and p2 | |
def sim_pearson(prefs,p1,p2): | |
# Get the list of mutually rated items | |
si={} | |
for item in prefs[p1]: | |
if item in prefs[p2]: si[item]=1 | |
# Find the number of elements | |
n=len(si) | |
# if they are no ratings in common, return 0 | |
if n==0: return 0 | |
# Add up all the preferences | |
sum1=sum([prefs[p1][it] for it in si]) | |
sum2=sum([prefs[p2][it] for it in si]) | |
# Sum up the squares | |
sum1Sq=sum([pow(prefs[p1][it],2) for it in si]) | |
sum2Sq=sum([pow(prefs[p2][it],2) for it in si]) | |
# Sum up the products | |
pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si]) | |
# Calculate Pearson score | |
num=pSum-(sum1*sum2/n) | |
den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n)) | |
if den==0: return 0 | |
r=num/den | |
return r | |
# Returns the best matches for person from the prefs dictionary. | |
# Number of results and similarity function are optional params. | |
def topMatches(prefs,person,n=5,similarity=sim_pearson): | |
scores=[(similarity(prefs,person,other),other) | |
for other in prefs if other!=person] | |
# Sort the list so the highest scores appear at the top | |
scores.sort() | |
scores.reverse() | |
return scores[0:n] | |
# Gets recommendations for a person by using a weighted average | |
# of every other user's rankings | |
def getRecommendations(prefs,person,similarity=sim_pearson): | |
totals={} | |
simSums={} | |
for other in prefs: | |
# don't compare me to myself | |
if other==person: continue | |
sim=similarity(prefs,person,other) | |
# ignore scores of zero or lower | |
if sim<=0: continue | |
for item in prefs[other]: | |
# only score movies I haven't seen yet | |
if item not in prefs[person] or prefs[person][item]==0: | |
# Similarity * Score | |
totals.setdefault(item,0) | |
totals[item]+=prefs[other][item]*sim | |
# Sum of similarities | |
simSums.setdefault(item,0) | |
simSums[item]+=sim | |
# Create the normalized list | |
rankings=[(total/simSums[item],item) for item,total in totals.items()] | |
# Return the sorted list | |
rankings.sort() | |
rankings.reverse() | |
return rankings |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment