Last active
July 4, 2019 20:44
-
-
Save r7vme/497bad605a8d2eae503676cbaa3a30dd to your computer and use it in GitHub Desktop.
convert_bonnet_to_tensorrt.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import graphsurgeon as gs | |
import tensorflow as tf | |
import tensorrt as trt | |
import uff | |
if __name__ == "__main__": | |
data_type = trt.DataType.HALF | |
#data_type = trt.DataType.FLOAT | |
output_node = "test_model/model/logits/linear/BiasAdd" | |
input_node = "test_model/model/images/truediv" | |
graph_pb = "optimized_tRT.pb" | |
engine_file = "sample.engine" | |
dynamic_graph = gs.DynamicGraph(graph_pb) | |
# replace LeakyRelu wiht LReLU_TRT plugin | |
nodes=[n.name for n in dynamic_graph.as_graph_def().node] | |
ns={} | |
for node in nodes: | |
if "LeakyRelu" in node: | |
ns[node]=gs.create_plugin_node(name=node,op="LReLU_TRT", negSlope=0.1) | |
dynamic_graph.collapse_namespaces(ns) | |
# convert to UFF | |
uff_model = uff.from_tensorflow(dynamic_graph.as_graph_def(), output_nodes=[output_node]) | |
# convert to TRT | |
G_LOGGER = trt.Logger(trt.Logger.ERROR) | |
trt.init_libnvinfer_plugins(G_LOGGER, "") | |
builder = trt.Builder(G_LOGGER) | |
builder.max_batch_size = 1 | |
builder.max_workspace_size = 1 << 30 | |
if data_type==trt.DataType.HALF: | |
builder.fp16_mode=True | |
network = builder.create_network() | |
parser = trt.UffParser() | |
parser.register_input(input_node, trt.Dims([3, 256, 512])) | |
parser.register_output(output_node) | |
parser.parse_buffer(uff_model, network, data_type) | |
engine = builder.build_cuda_engine(network) | |
with open(engine_file, "wb") as f: | |
f.write(engine.serialize()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment