Created
November 1, 2014 06:56
-
-
Save r9y9/6ced1cca63090258aa82 to your computer and use it in GitHub Desktop.
Hidden Markov Models with Gaussian observation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Hidden Markov Models | |
using Distributions | |
type HMM | |
K::Int # number of possible states | |
μ::Array{Float64, 2} # shape (D, K) | |
π::Array{Float64, 1} # shape (K) | |
A::Array{Float64, 2} # shape (K, K) | |
Σ::Array{Float64, 3} # shape (D, D, K) | |
function HMM(D::Int, K::Int) | |
Σ = Array(Float64, D, D, K) | |
for k=1:K | |
Σ[:,:,k] = diagm(ones(D)) | |
end | |
new(K, | |
rand(D, K), | |
ones(K) ./ K, | |
ones(K, K) ./ K, | |
Σ) | |
end | |
end | |
function updateE!(hmm::HMM, | |
Y::AbstractMatrix, # shape: (D, T) | |
α::Matrix{Float64}, # shape: (K, T) | |
β::Matrix{Float64}, # shape: (K, T) | |
γ::Matrix{Float64}, # shape: (K, T) | |
ξ::Array{Float64, 3}, # shape: (K, K, T-1) | |
B::Matrix{Float64}) # shape: (K, T) | |
const D, T = size(Y) | |
# Gaussian prob. | |
for k=1:hmm.K | |
gauss = MvNormal(hmm.μ[:,k], hmm.Σ[:,:,k]) | |
for t=1:T | |
B[k,t] = pdf(gauss, Y[:,t]) | |
end | |
end | |
c = Array(Float64, T) | |
# forward recursion | |
α[:,1] = hmm.π .* B[:,1] | |
c[1] = sum(α[:,1]) | |
α[:,1] /= c[1] | |
for t=2:T | |
α[:,t] = (hmm.A' * α[:,t-1]) .* B[:,t] | |
c[t] = sum(α[:,t]) | |
α[:,t] /= c[t] | |
end | |
@assert !any(isnan(α)) | |
likelihood = sum(log(c)) | |
@assert !isnan(likelihood) | |
# backword recursion | |
β[:,T] = 1.0 | |
for t=T-1:-1:1 | |
β[:,t] = hmm.A * β[:,t+1] .* B[:,t+1] ./ c[t+1] | |
end | |
@assert !any(isnan(β)) | |
γ = α .* β | |
for t=1:T-1 | |
ξ[:,:,t] = hmm.A .* α[:,t] .* β[:,t+1]' .* B[:,t+1]' ./ c[t+1] | |
end | |
return γ, ξ, likelihood | |
end | |
function updateM!(hmm::HMM, | |
Y::AbstractMatrix, | |
γ::Matrix{Float64}, # shape: (K, T) | |
ξ::Array{Float64, 3}) # shape: (K, K, T-1) | |
const D, T = size(Y) | |
# prior | |
hmm.π[:] = γ[:,1] / sum(γ[:,1]) | |
# observation | |
# mean | |
hmm.μ[:,:] = (Y*γ') ./ sum(γ, 2)' | |
# covariance | |
# fill!(hmm.Σ, 0.0) | |
for k=1:hmm.K | |
Ŷ = Y .- hmm.μ[:,k] | |
hmm.Σ[:,:,k] = (γ[k,:] .* Ŷ) * Ŷ' / sum(γ[k,:]) | |
end | |
# transition | |
hmm.A[:,:] = sum(ξ, 3) ./ (sum(γ, 2)) | |
nothing | |
end | |
type HMMTrainingResult | |
likelihoods::Vector{Float64} | |
α::Matrix{Float64} | |
β::Matrix{Float64} | |
γ::Matrix{Float64} | |
ξ::Array{Float64, 3} | |
end | |
function fit!(hmm::HMM, | |
Y::AbstractMatrix; | |
maxiter::Int=100, | |
tol::Float64=0.0, | |
verbose::Bool=false) | |
const D, T = size(Y) | |
likelihood::Vector{Float64} = zeros(1) | |
α = Array(Float64, hmm.K, T) | |
β = Array(Float64, hmm.K, T) | |
γ = Array(Float64, hmm.K, T) | |
ξ = Array(Float64, hmm.K, hmm.K, T-1) | |
B = Array(Float64, hmm.K, T) | |
for iter=1:maxiter | |
# update expectations | |
γ, ξ, score = updateE!(hmm, Y, α, β, γ, ξ, B) | |
# update parameters | |
updateM!(hmm, Y, γ, ξ) | |
improvement = (score - likelihood[end]) / abs(likelihood[end]) | |
if verbose | |
println("#$(iter): bound $(likelihood[end]) | |
improvement: $(improvement)") | |
end | |
# check if converged | |
if abs(improvement) < tol | |
if verbose | |
println("#$(iter) converged") | |
end | |
break | |
end | |
push!(likelihood, score) | |
end | |
# remove initial zero | |
shift!(likelihood) | |
return HMMTrainingResult(likelihood, α, β, γ, ξ) | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment