Last active
August 29, 2015 14:20
-
-
Save rBatt/7ae49c0f216d430906ca to your computer and use it in GitHub Desktop.
Lake Metabolizer Latex Scripts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% =============== | |
% = Bookkeeping = | |
% =============== | |
% Equation 3: average respiration | |
R_{\mu} = \frac{\sum\limits_{i=1}^{n} \Delta DO_i - F_i}{n \Delta t} | |
NEP = \frac{NEP_t (\text{mg O}_2 \text{ L}^{\text{-}1} \Delta t)} {1} | |
% ======= | |
% = OLS = | |
% ======= | |
% ======= | |
% = MLE = | |
% ======= | |
% Equation 8: mle process model, expanded | |
% \alpha_{t} = a_t k_{t-1}^{\text{-}1} z_{t-1} + \text{-e}^{\text{-}k_{t-1} z_{t-1}^{\text{-}1}} a_t k_{t-1}^{\text{-}1} z_{t-1} + \text{e}^{\text{-}k_{t-1} z_{t-1}^{\text{-}1}} \alpha_{t-1} | |
\alpha_{t} = a_t \kappa_{t-1} + \text{-e}^{\text{-}\kappa_{t-1}} a_t \kappa_{t-1} + \text{e}^{\text{-}\kappa_{t-1}} \alpha_{t-1} + \epsilon_{t} | |
% Equation 9: mle a_t term | |
a_t = \iota I_{t-1} + \rho (log_{e}T_{t-1}) + \kappa_{t-1} O_{s,t-1} | |
% Equation 9.5: mle nll | |
L = \sum\limits_{t=1}^{N} \frac{1}{2} \text{log}_e(2 \pi \sigma^2) + \frac{1}{2 \sigma^2} (DO_t - \alpha_t)^2 | |
\kappa_{t} = (k_{t} \Delta t) z^{\text{-}1}_{t} | |
% ========== | |
% = Kalman = | |
% ========== | |
% | |
% Equation 10: kalman observation equation | |
y_t = \alpha_t + \eta_t \text{; } \eta \sim \mathcal{N}(0,H) | |
% Equation 11: kalman process equation (simple) | |
\alpha_{t|t-1} = \alpha_{t-1} + \iota I_{t-1} + \rho (log_e T_{t-1}) + F^{*}_{t-1} + \epsilon_t \text{; } \epsilon \sim \mathcal{N}(0, Q) | |
% Equation 12: kalman filter process (expanded) | |
% \alpha_{t|t-1} = a_t k_{t-1}^{\text{-}1} z_{t-1} + \text{-e}^{\text{-}k_{t-1} z_{t-1}^{\text{-}1}} a_t k_{t-1}^{\text{-}1} z_{t-1} + \text{e}^{\text{-}k_{t-1} z_{t-1}^{\text{-}1}} \alpha_{t-1} + \epsilon_t | |
\alpha_{t|t-1} = a_t \kappa_{t-1} + \text{-e}^{\text{-}\kappa_{t-1}} a_t \kappa_{t-1} + \text{e}^{\text{-}\kappa_{t-1}} \alpha_{t-1} + \epsilon_{t} | |
% Equation 13: kalman a_t term: same as Equation 9, mle a_t term | |
% Equation 18: kalman nll | |
L = \sum\limits_{t=1}^{N} \frac{1}{2} \text{log}_e(2 \pi) + \frac{1}{2} \text{log}_e(E_t) + \frac{1}{2 E_t} (y_t - \alpha_{t|t-1})^2 | |
% ============ | |
% = Bayesian = | |
% ============ | |
% Equation 23: 2-part bayes process (k or no k) | |
\alpha_{t}^{*} = \begin{cases} \alpha_{t-1} + a_t & \text{if } \kappa_{t} = 0 \\ a_t \kappa_{t-1}^{\text{-}1} + \text{-e}^{\text{-}\kappa_{t-1}} a_t \kappa_{t-1}^{\text{-}1} + \text{e}^{\text{-}\kappa_{t-1}} \alpha_{t-1} & \text{otherwise} \end{cases} | |
% Equation 24: bayesian a_t (slightly different than the others, but for no good reason) | |
a_t = X_{t-1} \beta + \kappa_{t-1} O_{s,t-1} | |
% Equation 25: bayes term for kz | |
\kappa_{t} = (K^{\ast}_{t} \Delta t) z^{\text{-}1}_{t} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment