Created
November 29, 2012 16:54
-
-
Save radaniba/4170353 to your computer and use it in GitHub Desktop.
A small script to calculate pearson correlation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/perl | |
| # Correlation | |
| # Didier Gonze | |
| # Updated: 28/4/2004 | |
| ########################################################################################## | |
| &ReadArguments; | |
| &ReadData; | |
| &Correlation; | |
| ########################################################################################## | |
| ### Read arguments from the command line | |
| sub ReadArguments { | |
| $verbo=0; | |
| $infile = ""; | |
| $col1=1; # 1st column | |
| $col2=2; # 2nd column | |
| $title=0; | |
| foreach my $a (0..$#ARGV) { | |
| ### help | |
| if ($ARGV[0] eq "-h") { | |
| die "Syntax: correlation.pl -i filename -col # #\n"; | |
| } | |
| elsif ($ARGV[0] eq "-help") { | |
| &PrintHelp; | |
| } | |
| ### input file | |
| elsif ($ARGV[$a] eq "-i") { | |
| $ok=1; | |
| $infile = $ARGV[$a+1]; | |
| } | |
| ### column with the data | |
| elsif ($ARGV[$a] eq "-col") { | |
| $col1 = $ARGV[$a+1]; | |
| $col2 = $ARGV[$a+2]; | |
| } | |
| ### verbosity | |
| elsif ($ARGV[$a] eq "-v") { | |
| $verbo=1; | |
| } | |
| } | |
| if ($infile eq "") { | |
| die "STOP! You have to give the name of the input file!\n"; | |
| } | |
| } # End of ReadArguments | |
| ########################################################################################## | |
| ### Print help | |
| sub PrintHelp { | |
| open HELP, "| more"; | |
| print <<EndHelp; | |
| NAME | |
| correlation.pl | |
| DESCRIPTION | |
| Calculate the (Pearson) correlation coefficient between two columns | |
| of data. The formula are as described in Wolfram website: | |
| http://mathworld.wolfram.com/CorrelationCoefficient.html | |
| AUTHOR | |
| Didier Gonze (dgonze\@ulb.ac.be) | |
| OPTIONS | |
| -i file_name | |
| Specify the input file containing the data. | |
| This argument is obligatory (except if using option -h). | |
| -col # # | |
| Specify the columns containing the data (default: 1 2). | |
| -v | |
| Verbosity: print detailed informations during the | |
| process. | |
| -h | |
| Give syntax. This argument must be the first. | |
| -help | |
| Give detailed help (print this message). This argument | |
| must be the first. | |
| EXAMPLE | |
| perl correlation.pl -i datafile -col 2 3 | |
| EndHelp | |
| close HELP; | |
| die "\n"; | |
| } # End of PrintHelp | |
| ########################################################################################## | |
| ### Read the data and fill the data vector | |
| sub ReadData { | |
| my $i=0; | |
| my $badlines=0; | |
| open inf, $infile or die "STOP! File $infile not found.\n"; | |
| if ($verbo==1) {print "Open input file: $infile\n";} | |
| if ($verbo==1) {print "Select columns: $col1 and $col2\n";} | |
| foreach $line (<inf>){ | |
| chomp $line; | |
| @line=split /\t/,$line; | |
| if ($line[$col1-1] =~ /\d+/ and $line[$col2-1] =~ /\d+/){ | |
| $i++; | |
| $x[1][$i]=$line[$col1-1]; | |
| $x[2][$i]=$line[$col2-1]; | |
| } | |
| else{ | |
| $badlines++; | |
| } | |
| } | |
| $nbdata=$i; | |
| if ($nbdata==0) {die "STOP! No numeric data...\n";} | |
| if ($verbo==1) {print "Total number of data = $nbdata\n";} | |
| if ($verbo==1) {print "Number of rejected lines (no numeric data) = $badlines\n";} | |
| close inf; | |
| } # End of ReadData | |
| ########################################################################################## | |
| ### Correlation | |
| sub Correlation { | |
| $mean[1]=&Mean(1); | |
| $mean[2]=&Mean(2); | |
| if ($verbo==1) { | |
| $xmean1=sprintf("%.3f",$mean[1]); | |
| $xmean2=sprintf("%.3f",$mean[2]); | |
| print "Mean($col1) = $xmean1\n"; | |
| print "Mean($col2) = $xmean2\n"; | |
| } | |
| $ssxx=&SS(1,1); | |
| $ssyy=&SS(2,2); | |
| $ssxy=&SS(1,2); | |
| if ($verbo==1) { | |
| $xssxx=sprintf("%.3f",$ssxx); | |
| $xssyy=sprintf("%.3f",$ssyy); | |
| $xssxy=sprintf("%.3f",$ssxy); | |
| print "SS($col1)= $xssxx\n"; | |
| print "SS($col2) = $xssyy\n"; | |
| print "SS($col1,$col2) = $xssxy\n"; | |
| } | |
| $correl=&Correl($ssxx,$ssyy,$ssxy); | |
| $xcorrel=sprintf("%.4f",$correl); | |
| print "Correlation = $xcorrel\n"; | |
| } # End of Correlation | |
| ########################################################################################## | |
| ### Mean | |
| sub Mean { | |
| my ($a)=@_; | |
| my ($i,$sum)=(0,0); | |
| for ($i=1;$i<=$nbdata;$i++){ | |
| $sum=$sum+$x[$a][$i]; | |
| } | |
| $mu=$sum/$nbdata; | |
| return $mu; | |
| } | |
| ########################################################################################## | |
| ### SS = sum of squared deviations to the mean | |
| sub SS { | |
| my ($a,$b)=@_; | |
| my ($i,$sum)=(0,0); | |
| for ($i=1;$i<=$nbdata;$i++){ | |
| $sum=$sum+($x[$a][$i]-$mean[$a])*($x[$b][$i]-$mean[$b]); | |
| } | |
| return $sum; | |
| } | |
| ########################################################################################## | |
| ### Correlation | |
| sub Correl { | |
| my($ssxx,$ssyy,$ssxy)=@_; | |
| $sign=$ssxy/abs($ssxy); | |
| $correl=$sign*sqrt($ssxy*$ssxy/($ssxx*$ssyy)); | |
| return $correl; | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment