Created
September 5, 2020 14:28
-
-
Save raeq/d95332d331ead89a695c21934d378db0 to your computer and use it in GitHub Desktop.
Create timings
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from timeit import * | |
def collect_results(): | |
results = [] | |
for i in range(1000, 2000001, 100000): | |
f = "fast_doubling_fibonacci_recursive" | |
t1 = Timer(f"{f}({i})", | |
f"from __main__ import {f}") | |
st1 = t1.timeit(number=10) | |
f = "matrix_fibonacci" | |
t2 = Timer(f"{f}({i})", | |
f"from __main__ import {f}") | |
st2 = t2.timeit(number=10) | |
results.append((i, st1 / 10, st2 / 10)) | |
print(results) | |
return results | |
if __name__ == "__main__": | |
old_results = collect_results() | |
import numpy as np | |
import matplotlib.pyplot as plt | |
matrixDat = np.array(old_results) | |
print (matrixDat) | |
plt.plot(matrixDat[:, 0], matrixDat[:, 1], 'o', color='red', label='fast_doubling_fibonacci_recursive'); | |
plt.plot(matrixDat[:, 0], matrixDat[:, 2], '+', color='blue', label='matrix_fibonacci'); | |
leg = plt.legend(numpoints=1) | |
plt.savefig('my_plot.png') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment