Last active
September 13, 2019 21:05
-
-
Save rafaelcascalho/fe015dd80f0cae659df3a16b260e55fd to your computer and use it in GitHub Desktop.
I got this error after setting up all datasets but the mesp ones. Is it really an issue related to that?
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
collected 37 items | |
tests/test_classification_metric.py .... [ 10%] | |
tests/test_demo_adversarial_debiasing.py F [ 13%] | |
tests/test_demo_calibrated_eqodds_postprocessing.py F [ 16%] | |
tests/test_demo_lfr.py F [ 18%] | |
tests/test_demo_optim_data_preproc.py F [ 21%] | |
tests/test_demo_reject_option_classification.py F [ 24%] | |
tests/test_demo_reweighing_preproc.py F [ 27%] | |
tests/test_disparate_impact_remover.py FF [ 32%] | |
tests/test_lfr.py ....... [ 51%] | |
tests/test_meta_classifier.py . [ 54%] | |
tests/test_reweighing.py . [ 56%] | |
tests/test_sample_distortion_metric.py ...... [ 72%] | |
tests/test_standard_datasets.py ..... [ 86%] | |
tests/test_structured_dataset.py ..... [100%] | |
=========================================================================== FAILURES =========================================================================== | |
_______________________________________________________________ test_demo_adversarial_debiasing ________________________________________________________________ | |
def test_demo_adversarial_debiasing(): | |
nb, errors = notebook_run(os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), | |
> '..', 'examples', 'demo_adversarial_debiasing.ipynb')) | |
../tests/test_demo_adversarial_debiasing.py:11: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
../tests/notebook_runner.py:33: in notebook_run | |
nb = nbformat.read(fout, nbformat.current_nbformat) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:141: in read | |
return reads(fp.read(), as_version, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:74: in reads | |
nb = reader.reads(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:58: in reads | |
nb_dict = parse_json(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:14: in parse_json | |
nb_dict = json.loads(s, **kwargs) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
s = b'{\n "cells": [\n {\n "cell_type": "markdown",\n "metadata": {},\n "source": [\n "#### This notebook demons...ython",\n "pygments_lexer": "ipython3",\n "version": "3.5.6"\n }\n },\n "nbformat": 4,\n "nbformat_minor": 2\n}\n' | |
encoding = None, cls = None, object_hook = None, parse_float = None, parse_int = None, parse_constant = None, object_pairs_hook = None, kw = {} | |
def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, | |
parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): | |
"""Deserialize ``s`` (a ``str`` instance containing a JSON | |
document) to a Python object. | |
``object_hook`` is an optional function that will be called with the | |
result of any object literal decode (a ``dict``). The return value of | |
``object_hook`` will be used instead of the ``dict``. This feature | |
can be used to implement custom decoders (e.g. JSON-RPC class hinting). | |
``object_pairs_hook`` is an optional function that will be called with the | |
result of any object literal decoded with an ordered list of pairs. The | |
return value of ``object_pairs_hook`` will be used instead of the ``dict``. | |
This feature can be used to implement custom decoders that rely on the | |
order that the key and value pairs are decoded (for example, | |
collections.OrderedDict will remember the order of insertion). If | |
``object_hook`` is also defined, the ``object_pairs_hook`` takes priority. | |
``parse_float``, if specified, will be called with the string | |
of every JSON float to be decoded. By default this is equivalent to | |
float(num_str). This can be used to use another datatype or parser | |
for JSON floats (e.g. decimal.Decimal). | |
``parse_int``, if specified, will be called with the string | |
of every JSON int to be decoded. By default this is equivalent to | |
int(num_str). This can be used to use another datatype or parser | |
for JSON integers (e.g. float). | |
``parse_constant``, if specified, will be called with one of the | |
following strings: -Infinity, Infinity, NaN. | |
This can be used to raise an exception if invalid JSON numbers | |
are encountered. | |
To use a custom ``JSONDecoder`` subclass, specify it with the ``cls`` | |
kwarg; otherwise ``JSONDecoder`` is used. | |
The ``encoding`` argument is ignored and deprecated. | |
""" | |
if not isinstance(s, str): | |
raise TypeError('the JSON object must be str, not {!r}'.format( | |
> s.__class__.__name__)) | |
E TypeError: the JSON object must be str, not 'bytes' | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/json/__init__.py:312: TypeError | |
--------------------------------------------------------------------- Captured stderr call --------------------------------------------------------------------- | |
[NbConvertApp] Converting notebook /home/codeminer42/Code/open-source/aif360-learn/tests/../examples/demo_adversarial_debiasing.ipynb to notebook | |
[NbConvertApp] Executing notebook with kernel: python3 | |
[NbConvertApp] Writing 31479 bytes to /tmp/tmpnf6s8cj9.ipynb | |
____________________________________________________________ test_calibrated_eqodds_postprocessing _____________________________________________________________ | |
def test_calibrated_eqodds_postprocessing(): | |
nb, errors = notebook_run(os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), | |
> '..', 'examples', 'demo_calibrated_eqodds_postprocessing.ipynb')) | |
../tests/test_demo_calibrated_eqodds_postprocessing.py:10: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
../tests/notebook_runner.py:33: in notebook_run | |
nb = nbformat.read(fout, nbformat.current_nbformat) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:141: in read | |
return reads(fp.read(), as_version, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:74: in reads | |
nb = reader.reads(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:58: in reads | |
nb_dict = parse_json(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:14: in parse_json | |
nb_dict = json.loads(s, **kwargs) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
s = b'{\n "cells": [\n {\n "cell_type": "markdown",\n "metadata": {},\n "source": [\n "#### This notebook demons...ython",\n "pygments_lexer": "ipython3",\n "version": "3.5.6"\n }\n },\n "nbformat": 4,\n "nbformat_minor": 2\n}\n' | |
encoding = None, cls = None, object_hook = None, parse_float = None, parse_int = None, parse_constant = None, object_pairs_hook = None, kw = {} | |
def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, | |
parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): | |
"""Deserialize ``s`` (a ``str`` instance containing a JSON | |
document) to a Python object. | |
``object_hook`` is an optional function that will be called with the | |
result of any object literal decode (a ``dict``). The return value of | |
``object_hook`` will be used instead of the ``dict``. This feature | |
can be used to implement custom decoders (e.g. JSON-RPC class hinting). | |
``object_pairs_hook`` is an optional function that will be called with the | |
result of any object literal decoded with an ordered list of pairs. The | |
return value of ``object_pairs_hook`` will be used instead of the ``dict``. | |
This feature can be used to implement custom decoders that rely on the | |
order that the key and value pairs are decoded (for example, | |
collections.OrderedDict will remember the order of insertion). If | |
``object_hook`` is also defined, the ``object_pairs_hook`` takes priority. | |
``parse_float``, if specified, will be called with the string | |
of every JSON float to be decoded. By default this is equivalent to | |
float(num_str). This can be used to use another datatype or parser | |
for JSON floats (e.g. decimal.Decimal). | |
``parse_int``, if specified, will be called with the string | |
of every JSON int to be decoded. By default this is equivalent to | |
int(num_str). This can be used to use another datatype or parser | |
for JSON integers (e.g. float). | |
``parse_constant``, if specified, will be called with one of the | |
following strings: -Infinity, Infinity, NaN. | |
This can be used to raise an exception if invalid JSON numbers | |
are encountered. | |
To use a custom ``JSONDecoder`` subclass, specify it with the ``cls`` | |
kwarg; otherwise ``JSONDecoder`` is used. | |
The ``encoding`` argument is ignored and deprecated. | |
""" | |
if not isinstance(s, str): | |
raise TypeError('the JSON object must be str, not {!r}'.format( | |
> s.__class__.__name__)) | |
E TypeError: the JSON object must be str, not 'bytes' | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/json/__init__.py:312: TypeError | |
--------------------------------------------------------------------- Captured stderr call --------------------------------------------------------------------- | |
[NbConvertApp] Converting notebook /home/codeminer42/Code/open-source/aif360-learn/tests/../examples/demo_calibrated_eqodds_postprocessing.ipynb to notebook | |
[NbConvertApp] Executing notebook with kernel: python3 | |
[NbConvertApp] Writing 69824 bytes to /tmp/tmp2z2hztr7.ipynb | |
________________________________________________________________________ test_demo_lfr _________________________________________________________________________ | |
def test_demo_lfr(): | |
nb, errors = notebook_run(os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), | |
> '..', 'examples', 'demo_lfr.ipynb')) | |
../tests/test_demo_lfr.py:11: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
../tests/notebook_runner.py:33: in notebook_run | |
nb = nbformat.read(fout, nbformat.current_nbformat) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:141: in read | |
return reads(fp.read(), as_version, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:74: in reads | |
nb = reader.reads(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:58: in reads | |
nb_dict = parse_json(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:14: in parse_json | |
nb_dict = json.loads(s, **kwargs) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
s = b'{\n "cells": [\n {\n "cell_type": "markdown",\n "metadata": {},\n "source": [\n "#### This notebook demons...ython",\n "pygments_lexer": "ipython3",\n "version": "3.5.6"\n }\n },\n "nbformat": 4,\n "nbformat_minor": 2\n}\n' | |
encoding = None, cls = None, object_hook = None, parse_float = None, parse_int = None, parse_constant = None, object_pairs_hook = None, kw = {} | |
def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, | |
parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): | |
"""Deserialize ``s`` (a ``str`` instance containing a JSON | |
document) to a Python object. | |
``object_hook`` is an optional function that will be called with the | |
result of any object literal decode (a ``dict``). The return value of | |
``object_hook`` will be used instead of the ``dict``. This feature | |
can be used to implement custom decoders (e.g. JSON-RPC class hinting). | |
``object_pairs_hook`` is an optional function that will be called with the | |
result of any object literal decoded with an ordered list of pairs. The | |
return value of ``object_pairs_hook`` will be used instead of the ``dict``. | |
This feature can be used to implement custom decoders that rely on the | |
order that the key and value pairs are decoded (for example, | |
collections.OrderedDict will remember the order of insertion). If | |
``object_hook`` is also defined, the ``object_pairs_hook`` takes priority. | |
``parse_float``, if specified, will be called with the string | |
of every JSON float to be decoded. By default this is equivalent to | |
float(num_str). This can be used to use another datatype or parser | |
for JSON floats (e.g. decimal.Decimal). | |
``parse_int``, if specified, will be called with the string | |
of every JSON int to be decoded. By default this is equivalent to | |
int(num_str). This can be used to use another datatype or parser | |
for JSON integers (e.g. float). | |
``parse_constant``, if specified, will be called with one of the | |
following strings: -Infinity, Infinity, NaN. | |
This can be used to raise an exception if invalid JSON numbers | |
are encountered. | |
To use a custom ``JSONDecoder`` subclass, specify it with the ``cls`` | |
kwarg; otherwise ``JSONDecoder`` is used. | |
The ``encoding`` argument is ignored and deprecated. | |
""" | |
if not isinstance(s, str): | |
raise TypeError('the JSON object must be str, not {!r}'.format( | |
> s.__class__.__name__)) | |
E TypeError: the JSON object must be str, not 'bytes' | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/json/__init__.py:312: TypeError | |
--------------------------------------------------------------------- Captured stdout call --------------------------------------------------------------------- | |
RUNNING THE L-BFGS-B CODE | |
* * * | |
Machine precision = 2.220D-16 | |
N = 131 M = 10 | |
At X0 0 variables are exactly at the bounds | |
At iterate 0 f= 2.08403D+04 |proj g|= 2.34747D+03 | |
At iterate 1 f= 1.92268D+04 |proj g|= 2.26813D+03 | |
At iterate 2 f= 1.87377D+04 |proj g|= 8.24798D+02 | |
At iterate 3 f= 1.83557D+04 |proj g|= 1.06841D+03 | |
At iterate 4 f= 1.68390D+04 |proj g|= 4.86068D+02 | |
At iterate 5 f= 1.64426D+04 |proj g|= 1.25189D+03 | |
At iterate 6 f= 1.63187D+04 |proj g|= 6.35896D+02 | |
At iterate 7 f= 1.62482D+04 |proj g|= 3.71498D+02 | |
At iterate 8 f= 1.60510D+04 |proj g|= 1.07705D+03 | |
At iterate 9 f= 1.60067D+04 |proj g|= 9.86886D+02 | |
At iterate 10 f= 1.59015D+04 |proj g|= 9.63617D+02 | |
At iterate 11 f= 1.57740D+04 |proj g|= 2.59482D+02 | |
At iterate 12 f= 1.57225D+04 |proj g|= 3.02092D+02 | |
At iterate 13 f= 1.55402D+04 |proj g|= 9.75247D+02 | |
At iterate 14 f= 1.54094D+04 |proj g|= 3.32286D+02 | |
At iterate 15 f= 1.53602D+04 |proj g|= 3.75996D+02 | |
At iterate 16 f= 1.53134D+04 |proj g|= 4.32137D+02 | |
At iterate 17 f= 1.52420D+04 |proj g|= 3.38511D+02 | |
At iterate 18 f= 1.51964D+04 |proj g|= 1.44210D+02 | |
At iterate 19 f= 1.51835D+04 |proj g|= 8.54599D+01 | |
At iterate 20 f= 1.51658D+04 |proj g|= 1.33628D+02 | |
At iterate 21 f= 1.51340D+04 |proj g|= 2.38552D+02 | |
At iterate 22 f= 1.51055D+04 |proj g|= 3.40586D+02 | |
At iterate 23 f= 1.50862D+04 |proj g|= 2.09937D+02 | |
At iterate 24 f= 1.50819D+04 |proj g|= 8.90523D+01 | |
At iterate 25 f= 1.50802D+04 |proj g|= 1.01242D+02 | |
At iterate 26 f= 1.50761D+04 |proj g|= 1.11889D+02 | |
At iterate 27 f= 1.50663D+04 |proj g|= 1.50153D+02 | |
At iterate 28 f= 1.50551D+04 |proj g|= 8.58364D+01 | |
At iterate 29 f= 1.50504D+04 |proj g|= 9.95440D+01 | |
At iterate 30 f= 1.50470D+04 |proj g|= 5.58267D+01 | |
At iterate 31 f= 1.50438D+04 |proj g|= 4.11067D+01 | |
At iterate 32 f= 1.50386D+04 |proj g|= 5.29101D+01 | |
At iterate 33 f= 1.50296D+04 |proj g|= 6.60456D+01 | |
At iterate 34 f= 1.50184D+04 |proj g|= 7.37458D+01 | |
At iterate 35 f= 1.50111D+04 |proj g|= 3.21202D+02 | |
At iterate 36 f= 1.50027D+04 |proj g|= 1.00139D+02 | |
* * * | |
Tit = total number of iterations | |
Tnf = total number of function evaluations | |
Tnint = total number of segments explored during Cauchy searches | |
Skip = number of BFGS updates skipped | |
Nact = number of active bounds at final generalized Cauchy point | |
Projg = norm of the final projected gradient | |
F = final function value | |
* * * | |
N Tit Tnf Tnint Skip Nact Projg F | |
131 36 38 45 0 4 1.001D+02 1.500D+04 | |
F = 15002.718090290677 | |
STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT | |
Cauchy time 0.000E+00 seconds. | |
Subspace minimization time 0.000E+00 seconds. | |
Line search time 0.000E+00 seconds. | |
Total User time 0.000E+00 seconds. | |
--------------------------------------------------------------------- Captured stderr call --------------------------------------------------------------------- | |
[NbConvertApp] Converting notebook /home/codeminer42/Code/open-source/aif360-learn/tests/../examples/demo_lfr.ipynb to notebook | |
[NbConvertApp] Executing notebook with kernel: python3 | |
[NbConvertApp] Writing 32291 bytes to /tmp/tmp6g2pv_y_.ipynb | |
______________________________________________________________________ test_optim_preproc ______________________________________________________________________ | |
def test_optim_preproc(): | |
nb, errors = notebook_run(os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), | |
> '..', 'examples', 'demo_optim_data_preproc.ipynb')) | |
../tests/test_demo_optim_data_preproc.py:11: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
../tests/notebook_runner.py:33: in notebook_run | |
nb = nbformat.read(fout, nbformat.current_nbformat) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:141: in read | |
return reads(fp.read(), as_version, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:74: in reads | |
nb = reader.reads(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:58: in reads | |
nb_dict = parse_json(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:14: in parse_json | |
nb_dict = json.loads(s, **kwargs) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
s = b'{\n "cells": [\n {\n "cell_type": "markdown",\n "metadata": {},\n "source": [\n "#### This notebook demons...ython",\n "pygments_lexer": "ipython3",\n "version": "3.5.6"\n }\n },\n "nbformat": 4,\n "nbformat_minor": 2\n}\n' | |
encoding = None, cls = None, object_hook = None, parse_float = None, parse_int = None, parse_constant = None, object_pairs_hook = None, kw = {} | |
def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, | |
parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): | |
"""Deserialize ``s`` (a ``str`` instance containing a JSON | |
document) to a Python object. | |
``object_hook`` is an optional function that will be called with the | |
result of any object literal decode (a ``dict``). The return value of | |
``object_hook`` will be used instead of the ``dict``. This feature | |
can be used to implement custom decoders (e.g. JSON-RPC class hinting). | |
``object_pairs_hook`` is an optional function that will be called with the | |
result of any object literal decoded with an ordered list of pairs. The | |
return value of ``object_pairs_hook`` will be used instead of the ``dict``. | |
This feature can be used to implement custom decoders that rely on the | |
order that the key and value pairs are decoded (for example, | |
collections.OrderedDict will remember the order of insertion). If | |
``object_hook`` is also defined, the ``object_pairs_hook`` takes priority. | |
``parse_float``, if specified, will be called with the string | |
of every JSON float to be decoded. By default this is equivalent to | |
float(num_str). This can be used to use another datatype or parser | |
for JSON floats (e.g. decimal.Decimal). | |
``parse_int``, if specified, will be called with the string | |
of every JSON int to be decoded. By default this is equivalent to | |
int(num_str). This can be used to use another datatype or parser | |
for JSON integers (e.g. float). | |
``parse_constant``, if specified, will be called with one of the | |
following strings: -Infinity, Infinity, NaN. | |
This can be used to raise an exception if invalid JSON numbers | |
are encountered. | |
To use a custom ``JSONDecoder`` subclass, specify it with the ``cls`` | |
kwarg; otherwise ``JSONDecoder`` is used. | |
The ``encoding`` argument is ignored and deprecated. | |
""" | |
if not isinstance(s, str): | |
raise TypeError('the JSON object must be str, not {!r}'.format( | |
> s.__class__.__name__)) | |
E TypeError: the JSON object must be str, not 'bytes' | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/json/__init__.py:312: TypeError | |
--------------------------------------------------------------------- Captured stderr call --------------------------------------------------------------------- | |
[NbConvertApp] Converting notebook /home/codeminer42/Code/open-source/aif360-learn/tests/../examples/demo_optim_data_preproc.ipynb to notebook | |
[NbConvertApp] Executing notebook with kernel: python3 | |
[NbConvertApp] Writing 56179 bytes to /tmp/tmpuatkjc6p.ipynb | |
______________________________________________________________ test_reject_option_classification _______________________________________________________________ | |
def test_reject_option_classification(): | |
nb, errors = notebook_run(os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), | |
> '..', 'examples', 'demo_reject_option_classification.ipynb')) | |
../tests/test_demo_reject_option_classification.py:11: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
../tests/notebook_runner.py:33: in notebook_run | |
nb = nbformat.read(fout, nbformat.current_nbformat) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:141: in read | |
return reads(fp.read(), as_version, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:74: in reads | |
nb = reader.reads(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:58: in reads | |
nb_dict = parse_json(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:14: in parse_json | |
nb_dict = json.loads(s, **kwargs) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
s = b'{\n "cells": [\n {\n "cell_type": "markdown",\n "metadata": {},\n "source": [\n "#### This notebook demons...ython",\n "pygments_lexer": "ipython3",\n "version": "3.5.6"\n }\n },\n "nbformat": 4,\n "nbformat_minor": 2\n}\n' | |
encoding = None, cls = None, object_hook = None, parse_float = None, parse_int = None, parse_constant = None, object_pairs_hook = None, kw = {} | |
def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, | |
parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): | |
"""Deserialize ``s`` (a ``str`` instance containing a JSON | |
document) to a Python object. | |
``object_hook`` is an optional function that will be called with the | |
result of any object literal decode (a ``dict``). The return value of | |
``object_hook`` will be used instead of the ``dict``. This feature | |
can be used to implement custom decoders (e.g. JSON-RPC class hinting). | |
``object_pairs_hook`` is an optional function that will be called with the | |
result of any object literal decoded with an ordered list of pairs. The | |
return value of ``object_pairs_hook`` will be used instead of the ``dict``. | |
This feature can be used to implement custom decoders that rely on the | |
order that the key and value pairs are decoded (for example, | |
collections.OrderedDict will remember the order of insertion). If | |
``object_hook`` is also defined, the ``object_pairs_hook`` takes priority. | |
``parse_float``, if specified, will be called with the string | |
of every JSON float to be decoded. By default this is equivalent to | |
float(num_str). This can be used to use another datatype or parser | |
for JSON floats (e.g. decimal.Decimal). | |
``parse_int``, if specified, will be called with the string | |
of every JSON int to be decoded. By default this is equivalent to | |
int(num_str). This can be used to use another datatype or parser | |
for JSON integers (e.g. float). | |
``parse_constant``, if specified, will be called with one of the | |
following strings: -Infinity, Infinity, NaN. | |
This can be used to raise an exception if invalid JSON numbers | |
are encountered. | |
To use a custom ``JSONDecoder`` subclass, specify it with the ``cls`` | |
kwarg; otherwise ``JSONDecoder`` is used. | |
The ``encoding`` argument is ignored and deprecated. | |
""" | |
if not isinstance(s, str): | |
raise TypeError('the JSON object must be str, not {!r}'.format( | |
> s.__class__.__name__)) | |
E TypeError: the JSON object must be str, not 'bytes' | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/json/__init__.py:312: TypeError | |
--------------------------------------------------------------------- Captured stderr call --------------------------------------------------------------------- | |
[NbConvertApp] Converting notebook /home/codeminer42/Code/open-source/aif360-learn/tests/../examples/demo_reject_option_classification.ipynb to notebook | |
[NbConvertApp] Executing notebook with kernel: python3 | |
[NbConvertApp] Writing 44535 bytes to /tmp/tmpi92b8pqo.ipynb | |
___________________________________________________________________ test_reweighing_preproc ____________________________________________________________________ | |
def test_reweighing_preproc(): | |
nb, errors = notebook_run(os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), | |
> '..', 'examples', 'demo_reweighing_preproc.ipynb')) | |
../tests/test_demo_reweighing_preproc.py:11: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
../tests/notebook_runner.py:33: in notebook_run | |
nb = nbformat.read(fout, nbformat.current_nbformat) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:141: in read | |
return reads(fp.read(), as_version, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/__init__.py:74: in reads | |
nb = reader.reads(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:58: in reads | |
nb_dict = parse_json(s, **kwargs) | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/site-packages/nbformat/reader.py:14: in parse_json | |
nb_dict = json.loads(s, **kwargs) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
s = b'{\n "cells": [\n {\n "cell_type": "markdown",\n "metadata": {},\n "source": [\n "#### This notebook demons...ython",\n "pygments_lexer": "ipython3",\n "version": "3.5.6"\n }\n },\n "nbformat": 4,\n "nbformat_minor": 2\n}\n' | |
encoding = None, cls = None, object_hook = None, parse_float = None, parse_int = None, parse_constant = None, object_pairs_hook = None, kw = {} | |
def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, | |
parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): | |
"""Deserialize ``s`` (a ``str`` instance containing a JSON | |
document) to a Python object. | |
``object_hook`` is an optional function that will be called with the | |
result of any object literal decode (a ``dict``). The return value of | |
``object_hook`` will be used instead of the ``dict``. This feature | |
can be used to implement custom decoders (e.g. JSON-RPC class hinting). | |
``object_pairs_hook`` is an optional function that will be called with the | |
result of any object literal decoded with an ordered list of pairs. The | |
return value of ``object_pairs_hook`` will be used instead of the ``dict``. | |
This feature can be used to implement custom decoders that rely on the | |
order that the key and value pairs are decoded (for example, | |
collections.OrderedDict will remember the order of insertion). If | |
``object_hook`` is also defined, the ``object_pairs_hook`` takes priority. | |
``parse_float``, if specified, will be called with the string | |
of every JSON float to be decoded. By default this is equivalent to | |
float(num_str). This can be used to use another datatype or parser | |
for JSON floats (e.g. decimal.Decimal). | |
``parse_int``, if specified, will be called with the string | |
of every JSON int to be decoded. By default this is equivalent to | |
int(num_str). This can be used to use another datatype or parser | |
for JSON integers (e.g. float). | |
``parse_constant``, if specified, will be called with one of the | |
following strings: -Infinity, Infinity, NaN. | |
This can be used to raise an exception if invalid JSON numbers | |
are encountered. | |
To use a custom ``JSONDecoder`` subclass, specify it with the ``cls`` | |
kwarg; otherwise ``JSONDecoder`` is used. | |
The ``encoding`` argument is ignored and deprecated. | |
""" | |
if not isinstance(s, str): | |
raise TypeError('the JSON object must be str, not {!r}'.format( | |
> s.__class__.__name__)) | |
E TypeError: the JSON object must be str, not 'bytes' | |
../../../../miniconda3/envs/aiflearn/lib/python3.5/json/__init__.py:312: TypeError | |
--------------------------------------------------------------------- Captured stderr call --------------------------------------------------------------------- | |
[NbConvertApp] Converting notebook /home/codeminer42/Code/open-source/aif360-learn/tests/../examples/demo_reweighing_preproc.ipynb to notebook | |
[NbConvertApp] Executing notebook with kernel: python3 | |
[NbConvertApp] Writing 57583 bytes to /tmp/tmp8xe484rd.ipynb | |
_________________________________________________________________________ test_repair0 _________________________________________________________________________ | |
def test_repair0(): | |
ad = AdultDataset(protected_attribute_names=['sex'], | |
privileged_classes=[['Male']], categorical_features=[], | |
features_to_keep=['age', 'education-num']) | |
> di = DisparateImpactRemover(repair_level=0.) | |
../tests/test_disparate_impact_remover.py:17: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
self = <aiflearn.algorithms.preprocessing.disparate_impact_remover.DisparateImpactRemover object at 0x7ff158379438>, repair_level = 0.0 | |
sensitive_attribute = None | |
def __init__(self, repair_level=1.0, sensitive_attribute=None): | |
super(DisparateImpactRemover, self).__init__(repair_level=repair_level) | |
# avoid importing early since this package can throw warnings in some | |
# jupyter notebooks | |
> from BlackBoxAuditing.repairers.GeneralRepairer import Repairer | |
E ImportError: No module named 'BlackBoxAuditing' | |
../aiflearn/algorithms/preprocessing/disparate_impact_remover.py:36: ImportError | |
__________________________________________________________________________ test_adult __________________________________________________________________________ | |
def test_adult(): | |
protected = 'sex' | |
ad = AdultDataset(protected_attribute_names=[protected], | |
privileged_classes=[['Male']], categorical_features=[], | |
features_to_keep=['age', 'education-num', 'capital-gain', | |
'capital-loss', 'hours-per-week']) | |
scaler = MinMaxScaler(copy=False) | |
# ad.features = scaler.fit_transform(ad.features) | |
train, test = ad.split([32561]) | |
assert np.any(test.labels) | |
train.features = scaler.fit_transform(train.features) | |
test.features = scaler.transform(test.features) | |
index = train.feature_names.index(protected) | |
X_tr = np.delete(train.features, index, axis=1) | |
X_te = np.delete(test.features, index, axis=1) | |
y_tr = train.labels.ravel() | |
> di = DisparateImpactRemover(repair_level=1.0) | |
../tests/test_disparate_impact_remover.py:43: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
self = <aiflearn.algorithms.preprocessing.disparate_impact_remover.DisparateImpactRemover object at 0x7ff15736a320>, repair_level = 1.0 | |
sensitive_attribute = None | |
def __init__(self, repair_level=1.0, sensitive_attribute=None): | |
super(DisparateImpactRemover, self).__init__(repair_level=repair_level) | |
# avoid importing early since this package can throw warnings in some | |
# jupyter notebooks | |
> from BlackBoxAuditing.repairers.GeneralRepairer import Repairer | |
E ImportError: No module named 'BlackBoxAuditing' | |
../aiflearn/algorithms/preprocessing/disparate_impact_remover.py:36: ImportError | |
======================================================================= warnings summary ======================================================================= | |
tests/test_lfr.py::test_fit_isnumpy | |
/home/codeminer42/Code/open-source/aif360-learn/aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py:67: NumbaWarning: | |
Compilation is falling back to object mode WITH looplifting enabled because Function "LFR_optim_obj" failed type inference due to: Unknown attribute 'iters' of type recursive(type(CPUDispatcher(<function LFR_optim_obj at 0x7ff133bdc510>))) | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 71: | |
def LFR_optim_obj(params, data_sensitive, data_nonsensitive, y_sensitive, | |
<source elided> | |
LFR_optim_obj.iters += 1 | |
^ | |
[1] During: typing of get attribute at /home/codeminer42/Code/open-source/aif360-learn/aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py (71) | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 71: | |
def LFR_optim_obj(params, data_sensitive, data_nonsensitive, y_sensitive, | |
<source elided> | |
LFR_optim_obj.iters += 1 | |
^ | |
@jit | |
tests/test_lfr.py::test_fit_isnumpy | |
/home/codeminer42/Code/open-source/aif360-learn/aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py:67: NumbaWarning: | |
Compilation is falling back to object mode WITHOUT looplifting enabled because Function "LFR_optim_obj" failed type inference due to: cannot determine Numba type of <class 'numba.dispatcher.LiftedLoop'> | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 90: | |
def LFR_optim_obj(params, data_sensitive, data_nonsensitive, y_sensitive, | |
<source elided> | |
L_z = 0.0 | |
for j in range(k): | |
^ | |
@jit | |
tests/test_lfr.py::test_fit_isnumpy | |
/home/codeminer42/miniconda3/envs/aiflearn/lib/python3.5/site-packages/numba/compiler.py:742: NumbaWarning: Function "LFR_optim_obj" was compiled in object mode without forceobj=True, but has lifted loops. | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 68: | |
@jit | |
def LFR_optim_obj(params, data_sensitive, data_nonsensitive, y_sensitive, | |
^ | |
self.func_ir.loc)) | |
tests/test_lfr.py::test_fit_isnumpy | |
/home/codeminer42/miniconda3/envs/aiflearn/lib/python3.5/site-packages/numba/compiler.py:751: NumbaDeprecationWarning: | |
Fall-back from the nopython compilation path to the object mode compilation path has been detected, this is deprecated behaviour. | |
For more information visit http://numba.pydata.org/numba-doc/latest/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 68: | |
@jit | |
def LFR_optim_obj(params, data_sensitive, data_nonsensitive, y_sensitive, | |
^ | |
warnings.warn(errors.NumbaDeprecationWarning(msg, self.func_ir.loc)) | |
tests/test_lfr.py::test_transform_protecteddataset | |
/home/codeminer42/Code/open-source/aif360-learn/aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py:55: NumbaWarning: | |
Compilation is falling back to object mode WITH looplifting enabled because Function "yhat" failed type inference due to: Invalid use of Function(<built-in function iadd>) with argument(s) of type(s): (float64, array(float64, 1d, C)) | |
Known signatures: | |
* (int64, int64) -> int64 | |
* (int64, uint64) -> int64 | |
* (uint64, int64) -> int64 | |
* (uint64, uint64) -> uint64 | |
* (float32, float32) -> float32 | |
* (float64, float64) -> float64 | |
* (complex64, complex64) -> complex64 | |
* (complex128, complex128) -> complex128 | |
* parameterized | |
In definition 0: | |
All templates rejected with literals. | |
In definition 1: | |
All templates rejected without literals. | |
In definition 2: | |
All templates rejected with literals. | |
In definition 3: | |
All templates rejected without literals. | |
In definition 4: | |
All templates rejected with literals. | |
In definition 5: | |
All templates rejected without literals. | |
In definition 6: | |
All templates rejected with literals. | |
In definition 7: | |
All templates rejected without literals. | |
In definition 8: | |
All templates rejected with literals. | |
In definition 9: | |
All templates rejected without literals. | |
In definition 10: | |
All templates rejected with literals. | |
In definition 11: | |
All templates rejected without literals. | |
In definition 12: | |
All templates rejected with literals. | |
In definition 13: | |
All templates rejected without literals. | |
This error is usually caused by passing an argument of a type that is unsupported by the named function. | |
[1] During: typing of intrinsic-call at /home/codeminer42/Code/open-source/aif360-learn/aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py (64) | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 64: | |
def yhat(M_nk, y, w, N, k): | |
<source elided> | |
yhat[i] = 0.999 if yhat[i] >= 1 else yhat[i] | |
L_y += -1 * y[i] * np.log(yhat[i]) - (1.0 - y[i]) * np.log(1.0 - yhat[i]) | |
^ | |
@jit | |
tests/test_lfr.py::test_transform_protecteddataset | |
/home/codeminer42/Code/open-source/aif360-learn/aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py:55: NumbaWarning: | |
Compilation is falling back to object mode WITHOUT looplifting enabled because Function "yhat" failed type inference due to: cannot determine Numba type of <class 'numba.dispatcher.LiftedLoop'> | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 59: | |
def yhat(M_nk, y, w, N, k): | |
<source elided> | |
L_y = 0.0 | |
for i in range(N): | |
^ | |
@jit | |
tests/test_lfr.py::test_transform_protecteddataset | |
/home/codeminer42/miniconda3/envs/aiflearn/lib/python3.5/site-packages/numba/compiler.py:742: NumbaWarning: Function "yhat" was compiled in object mode without forceobj=True, but has lifted loops. | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 56: | |
@jit | |
def yhat(M_nk, y, w, N, k): | |
^ | |
self.func_ir.loc)) | |
tests/test_lfr.py::test_transform_protecteddataset | |
/home/codeminer42/miniconda3/envs/aiflearn/lib/python3.5/site-packages/numba/compiler.py:751: NumbaDeprecationWarning: | |
Fall-back from the nopython compilation path to the object mode compilation path has been detected, this is deprecated behaviour. | |
For more information visit http://numba.pydata.org/numba-doc/latest/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 56: | |
@jit | |
def yhat(M_nk, y, w, N, k): | |
^ | |
warnings.warn(errors.NumbaDeprecationWarning(msg, self.func_ir.loc)) | |
tests/test_lfr.py::test_transform_protecteddataset | |
/home/codeminer42/Code/open-source/aif360-learn/aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py:55: NumbaWarning: | |
Compilation is falling back to object mode WITHOUT looplifting enabled because Function "yhat" failed type inference due to: Invalid use of Function(<built-in function iadd>) with argument(s) of type(s): (float64, array(float64, 1d, C)) | |
Known signatures: | |
* (int64, int64) -> int64 | |
* (int64, uint64) -> int64 | |
* (uint64, int64) -> int64 | |
* (uint64, uint64) -> uint64 | |
* (float32, float32) -> float32 | |
* (float64, float64) -> float64 | |
* (complex64, complex64) -> complex64 | |
* (complex128, complex128) -> complex128 | |
* parameterized | |
In definition 0: | |
All templates rejected with literals. | |
In definition 1: | |
All templates rejected without literals. | |
In definition 2: | |
All templates rejected with literals. | |
In definition 3: | |
All templates rejected without literals. | |
In definition 4: | |
All templates rejected with literals. | |
In definition 5: | |
All templates rejected without literals. | |
In definition 6: | |
All templates rejected with literals. | |
In definition 7: | |
All templates rejected without literals. | |
In definition 8: | |
All templates rejected with literals. | |
In definition 9: | |
All templates rejected without literals. | |
In definition 10: | |
All templates rejected with literals. | |
In definition 11: | |
All templates rejected without literals. | |
In definition 12: | |
All templates rejected with literals. | |
In definition 13: | |
All templates rejected without literals. | |
This error is usually caused by passing an argument of a type that is unsupported by the named function. | |
[1] During: typing of intrinsic-call at /home/codeminer42/Code/open-source/aif360-learn/aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py (64) | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 64: | |
def yhat(M_nk, y, w, N, k): | |
<source elided> | |
yhat[i] = 0.999 if yhat[i] >= 1 else yhat[i] | |
L_y += -1 * y[i] * np.log(yhat[i]) - (1.0 - y[i]) * np.log(1.0 - yhat[i]) | |
^ | |
@jit | |
tests/test_lfr.py::test_transform_protecteddataset | |
/home/codeminer42/miniconda3/envs/aiflearn/lib/python3.5/site-packages/numba/compiler.py:742: NumbaWarning: Function "yhat" was compiled in object mode without forceobj=True. | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 59: | |
def yhat(M_nk, y, w, N, k): | |
<source elided> | |
L_y = 0.0 | |
for i in range(N): | |
^ | |
self.func_ir.loc)) | |
tests/test_lfr.py::test_transform_protecteddataset | |
/home/codeminer42/miniconda3/envs/aiflearn/lib/python3.5/site-packages/numba/compiler.py:751: NumbaDeprecationWarning: | |
Fall-back from the nopython compilation path to the object mode compilation path has been detected, this is deprecated behaviour. | |
For more information visit http://numba.pydata.org/numba-doc/latest/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit | |
File "../aiflearn/algorithms/preprocessing/lfr_helpers/helpers.py", line 59: | |
def yhat(M_nk, y, w, N, k): | |
<source elided> | |
L_y = 0.0 | |
for i in range(N): | |
^ | |
warnings.warn(errors.NumbaDeprecationWarning(msg, self.func_ir.loc)) | |
-- Docs: https://docs.pytest.org/en/latest/warnings.html | |
==================================================== 8 failed, 29 passed, 11 warnings in 906.57s (0:15:06) ===================================================== | |
RUNNING THE L-BFGS-B CODE | |
* * * | |
Machine precision = 2.220D-16 | |
N = 131 M = 10 | |
At X0 0 variables are exactly at the bounds | |
At iterate 0 f= 2.26526D+04 |proj g|= 1.58260D+03 | |
At iterate 1 f= 2.04189D+04 |proj g|= 4.91265D+02 | |
At iterate 2 f= 2.01309D+04 |proj g|= 4.96682D+02 | |
At iterate 3 f= 1.97260D+04 |proj g|= 4.65151D+02 | |
At iterate 4 f= 1.90393D+04 |proj g|= 8.07770D+02 | |
At iterate 5 f= 1.88301D+04 |proj g|= 7.56099D+02 | |
At iterate 6 f= 1.87428D+04 |proj g|= 8.94691D+02 | |
At iterate 7 f= 1.83953D+04 |proj g|= 8.81409D+02 | |
At iterate 8 f= 1.75778D+04 |proj g|= 1.46632D+03 | |
At iterate 9 f= 1.73528D+04 |proj g|= 8.93699D+02 | |
At iterate 10 f= 1.72061D+04 |proj g|= 9.64026D+02 | |
At iterate 11 f= 1.68696D+04 |proj g|= 9.75129D+02 | |
At iterate 12 f= 1.66957D+04 |proj g|= 6.94447D+02 | |
At iterate 13 f= 1.64707D+04 |proj g|= 8.57689D+02 | |
At iterate 14 f= 1.61611D+04 |proj g|= 3.70558D+02 | |
At iterate 15 f= 1.60457D+04 |proj g|= 5.00958D+02 | |
At iterate 16 f= 1.59239D+04 |proj g|= 4.47909D+02 | |
At iterate 17 f= 1.58222D+04 |proj g|= 9.56907D+02 | |
At iterate 18 f= 1.57106D+04 |proj g|= 6.13336D+02 | |
At iterate 19 f= 1.56562D+04 |proj g|= 3.55303D+02 | |
At iterate 20 f= 1.55893D+04 |proj g|= 3.50948D+02 | |
At iterate 21 f= 1.55119D+04 |proj g|= 2.49244D+02 | |
At iterate 22 f= 1.54403D+04 |proj g|= 2.58441D+02 | |
At iterate 23 f= 1.53811D+04 |proj g|= 2.76940D+02 | |
At iterate 24 f= 1.53437D+04 |proj g|= 5.52288D+02 | |
At iterate 25 f= 1.52968D+04 |proj g|= 2.03731D+02 | |
At iterate 26 f= 1.52443D+04 |proj g|= 2.27741D+02 | |
At iterate 27 f= 1.52216D+04 |proj g|= 2.62413D+02 | |
At iterate 28 f= 1.51943D+04 |proj g|= 2.26614D+02 | |
At iterate 29 f= 1.51479D+04 |proj g|= 1.08968D+02 | |
At iterate 30 f= 1.51290D+04 |proj g|= 1.41082D+02 | |
At iterate 31 f= 1.50983D+04 |proj g|= 1.44776D+02 | |
At iterate 32 f= 1.50906D+04 |proj g|= 1.54591D+02 | |
* * * | |
Tit = total number of iterations | |
Tnf = total number of function evaluations | |
Tnint = total number of segments explored during Cauchy searches | |
Skip = number of BFGS updates skipped | |
Nact = number of active bounds at final generalized Cauchy point | |
Projg = norm of the final projected gradient | |
F = final function value | |
* * * | |
N Tit Tnf Tnint Skip Nact Projg F | |
131 32 38 41 0 3 1.546D+02 1.509D+04 | |
F = 15090.552840313529 | |
STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT | |
Cauchy time 0.000E+00 seconds. | |
Subspace minimization time 0.000E+00 seconds. | |
Line search time 0.000E+00 seconds. | |
Total User time 0.000E+00 seconds. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment