Created
April 9, 2018 20:39
-
-
Save rafalbednarczuk/1af6f5122ccc6b00bdb4da498d3399ca to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
fun main(args: Array<String>) { | |
val seed = 13455.toLong() | |
val recordReader = CSVRecordReader(0, ',') | |
recordReader.initialize(FileSplit(ClassPathResource("data.csv").file)) | |
//reader,label index,number of possible labels | |
val labelIndex = 0 | |
val numClasses = 6 | |
val batchSize = 106 | |
val iterator = RecordReaderDataSetIterator(recordReader, batchSize, labelIndex, numClasses) | |
val allData = iterator.next() | |
allData.shuffle(seed) | |
val testAndTrain = allData.splitTestAndTrain(0.8) | |
val trainingData = testAndTrain.train | |
val testData = testAndTrain.test | |
val normalizer = NormalizerStandardize() | |
normalizer.fit(trainingData) | |
normalizer.transform(trainingData) | |
normalizer.transform(testData) | |
val numInputs = 9 | |
val outputNum = 6 | |
val iterations = 1 | |
val epoches = 100000 | |
log.info("Building model...") | |
val conf = NeuralNetConfiguration.Builder() | |
.seed(seed) | |
.iterations(iterations) | |
.activation(Activation.TANH) | |
.weightInit(WeightInit.XAVIER) | |
.learningRate(10.0) | |
.updater(Updater.ADAGRAD) | |
.list() | |
.layer(0, DenseLayer.Builder().nIn(numInputs).nOut(2).build()) | |
.layer(1, OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD) | |
.activation(Activation.SOFTMAX).nIn(2).nOut(outputNum).build()) | |
.backprop(true) | |
.pretrain(false) | |
.build() | |
val model = MultiLayerNetwork(conf) | |
model.init() | |
model.setListeners(ScoreIterationListener(100)) | |
for (i in 1..epoches) { | |
model.fit(trainingData) | |
if (i % 100 == 0) { | |
val eval = Evaluation(6) | |
val output = model.output(testData.featureMatrix) | |
eval.eval(testData.labels, output) | |
log.info(eval.accuracy().toString()) | |
} | |
} | |
val eval = Evaluation(6) | |
val output = model.output(testData.featureMatrix) | |
eval.eval(testData.labels, output) | |
log.info(eval.accuracy().toString()) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment