Trying different methods to clean polygons to remove slivers
library(sf)
library(dplyr)
library(lwgeom)
# using planar geometry
sf::sf_use_s2(FALSE)
library(r5r) | |
library(mapview) | |
# build transport network | |
data_path <- system.file("extdata/spo", package = "r5r") | |
r5r_core <- setup_r5(data_path) | |
# load origin/destination points | |
points <- read.csv(file.path(data_path, "spo_hexgrid.csv")) | |
origin_1 <- subset(points, id =='89a8100c393ffff') |
library(flightsbr) | |
library(ggplot2) | |
library(data.table) | |
# download data | |
df <- flightsbr::read_flights(date = 2019:2023) | |
# filters | |
df <- df[ nr_ano_chegada_real >= 2019,] | |
df_rj <- df[ sg_iata_origem %in% c('SDU', 'GIG') | |
library(sfdep) | |
library(data.table) | |
library(cppRouting) | |
# get distance between neighbors | |
geo <- sf::st_geometry(guerry) | |
nb <- sfdep::st_contiguity(geo) | |
dists <- sfdep::st_nb_dists(geo, nb) |
# Library | |
library(ggplot2) | |
library(viridis) | |
# Dummy data | |
set.seed(42) | |
x <- LETTERS[1:20] | |
y <- paste0("var", seq(1,20)) | |
data <- expand.grid(X=x, Y=y) | |
data$Z <- runif(400, 0, 10000) |
library(sf) | |
library(terra) | |
library(gdalio) | |
library(geobr) | |
### Choose either a small or large area | |
i = 49 # small area | |
i = 1066 # large area |
library(gtfstools)
# read gtfs
data_path <- system.file("extdata/spo_gtfs.zip", package = "gtfstools")
gtfs <- read_gtfs(data_path)
# merge trips and freq
trip_df <- merge(gtfs$trips, gtfs$frequencies)
análise rápida dos dados de evolução diária do N. de bagagens pagas e gratuidas X Km
#' data downloaded from ANAC using flightsbr, https://github.com/ipeaGIT/flightsbr
#' data dictionary at https://www.gov.br/anac/pt-br/assuntos/regulados/empresas-aereas/envio-de-informacoes/descricao-de-variaveis
library(flightsbr)
library(data.table)
#' Comparing air passenger demand over time in Brazil | |
#' Reproducible code to create a figure visualizing how daily air passenger demand in Brazil has changed over time. | |
### Load libraries | |
library(ggplot2) | |
library(flightsbr) | |
library(lubridate) | |
library(data.table) |
Quick reproducible example showing how to use the r5r package to estimate cycling, walking and driving routes in R.
options(java.parameters = "-Xmx4G")
library(r5r)
library(geobr)