https://github.com/brentthorne/posterdown
https://github.com/rstudio/pagedown
https://github.com/GerkeLab/betterposter
library(ggplot2) | |
library(dplyr) | |
library(tidyr) | |
library(stringr) | |
library(scales) | |
library(gridExtra) | |
library(grid) | |
# use the NPR story data file --------------------------------------------- | |
# and be kind to NPR's bandwidth budget |
We start with the imports:
import dicom
import os
import numpy
The
pydicom
package can be installed throughpip
and can be found in https://pypi.python.org/pypi/pydicom/
library("RSiteCatalyst") | |
library("d3Network") | |
#### Authentication | |
SCAuth("key", "secret") | |
#### Get Pathing data: Single page, then ::anything:: pattern | |
pathpattern <- c("http://randyzwitch.com/big-data-hadoop-amazon-ec2-cloudera-part-1", "::anything::") | |
next_page <- QueuePathing("zwitchdev", | |
"2014-01-01", |
library(MCMCpack) | |
## Coping with polls: the more recent, the better they are. | |
##http://en.wikipedia.org/wiki/Opinion_polling_for_the_Scottish_independence_referendum,_2014 | |
polls = NULL | |
polls <- data.frame( rbind( | |
Survation = c(37, 50, 1010), | |
YouGov = c(35, 55, 1142), | |
TNSBMRB = c(32, 45, 1003), | |
IpsosMORI = c(40, 54, 1006), |
require(ipeds) | |
require(ggplot2) | |
require(reshape2) | |
require(scales) | |
data(surveys) | |
View(surveys) | |
# Directory | |
ipedsHelp('HD', 2012) |
library(plyr) | |
library(ggplot2) | |
library(ggmap) | |
libraries = read.csv("ontario_library_stats_2010.csv") | |
libraries$isFN = ifelse(libraries$Library.Service.Type == "First Nations Library",1,0) | |
# Here we create the 'proportionate' versions of all the variables | |
libraries[,143:265] = sapply(libraries[,20:142], function (x) x/libraries[,13]) | |
names(libraries)[143:265] = paste(names(libraries)[20:142], "P",sep=".") |
options(PlosApiKey = "<insert your API key here!>") | |
#install_github("rplos", "ropensci") | |
library("rplos") | |
library("ggplot2") | |
require("dplyr") | |
# Convert author strings to counts | |
countAuths <- function(cell) | |
length(unlist(strsplit(cell, ";"))) |
#’ Create a Kaplan-Meier plot using ggplot2 | |
#’ | |
#’ @param sfit a \code{\link[survival]{survfit}} object | |
#’ @param returns logical: if \code{TRUE}, return an ggplot object | |
#’ @param xlabs x-axis label | |
#’ @param ylabs y-axis label | |
#’ @param ystratalabs The strata labels. \code{Default = levels(summary(sfit)$strata)} | |
#’ @param ystrataname The legend name. Default = “Strata” | |
#’ @param timeby numeric: control the granularity along the time-axis | |
#’ @param main plot title |