Last active
February 22, 2016 14:16
-
-
Save raghavrv/881d377ad5061a27b564 to your computer and use it in GitHub Desktop.
RF Missing Value Benchmark script
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
*swp | |
*ipynb_checkpoints | |
*build | |
*.dat |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
The shape of the dataset is (581012, 54) | |
The number of trees for this benchmarking is 100 | |
Score with the entire dataset = 0.95 | |
Score RF with the 1.82173199202 % missing = 0.94 | |
Score RF+Imp. with the 1.82173199202 % missing = 0.95 | |
Score RF with the 3.55273467929 % missing = 0.96 | |
Score RF+Imp. with the 3.55273467929 % missing = 0.96 | |
Score RF with the 5.19537302857 % missing = 0.96 | |
Score RF+Imp. with the 5.19537302857 % missing = 0.96 | |
Score RF with the 6.75907503408 % missing = 0.97 | |
Score RF+Imp. with the 6.75907503408 % missing = 0.97 | |
Score RF with the 8.24469488869 % missing = 0.97 | |
Score RF+Imp. with the 8.24469488869 % missing = 0.97 | |
Score RF with the 9.65472823791 % missing = 0.97 | |
Score RF+Imp. with the 9.65472823791 % missing = 0.97 | |
Score RF with the 10.9961424906 % missing = 0.97 | |
Score RF+Imp. with the 10.9961424906 % missing = 0.98 | |
Score RF with the 12.2712707406 % missing = 0.98 | |
Score RF+Imp. with the 12.2712707406 % missing = 0.98 | |
Score RF with the 13.4793894739 % missing = 0.98 | |
Score RF+Imp. with the 13.4793894739 % missing = 0.98 | |
Score RF with the 14.6313482146 % missing = 0.98 | |
Score RF+Imp. with the 14.6313482146 % missing = 0.98 | |
Score RF with the 15.722225792 % missing = 0.98 | |
Score RF+Imp. with the 15.722225792 % missing = 0.98 | |
Score RF with the 16.7580461779 % missing = 0.98 | |
Score RF+Imp. with the 16.7580461779 % missing = 0.98 | |
Score RF with the 17.7444126226 % missing = 0.98 | |
Score RF+Imp. with the 17.7444126226 % missing = 0.98 | |
Score RF with the 18.6789537846 % missing = 0.98 | |
Score RF+Imp. with the 18.6789537846 % missing = 0.99 | |
Score RF with the 19.5694338945 % missing = 0.98 | |
Score RF+Imp. with the 19.5694338945 % missing = 0.98 | |
Score RF with the 20.4148903918 % missing = 0.98 | |
Score RF+Imp. with the 20.4148903918 % missing = 0.98 | |
Score RF with the 21.2185360613 % missing = 0.98 | |
Score RF+Imp. with the 21.2185360613 % missing = 0.99 | |
Score RF with the 21.9800458 % missing = 0.98 | |
Score RF+Imp. with the 21.9800458 % missing = 0.99 | |
Score RF with the 22.7055551348 % missing = 0.98 | |
Score RF+Imp. with the 22.7055551348 % missing = 0.99 | |
Score RF with the 23.3928265904 % missing = 0.98 | |
Score RF+Imp. with the 23.3928265904 % missing = 0.99 | |
Score RF with the 24.0459845159 % missing = 0.98 | |
Score RF+Imp. with the 24.0459845159 % missing = 0.99 | |
Score RF with the 24.6653890746 % missing = 0.98 | |
Score RF+Imp. with the 24.6653890746 % missing = 0.99 | |
Score RF with the 25.2552315487 % missing = 0.98 | |
Score RF+Imp. with the 25.2552315487 % missing = 0.99 | |
Score RF with the 25.8147979859 % missing = 0.98 | |
Score RF+Imp. with the 25.8147979859 % missing = 0.99 | |
Score RF with the 26.347275673 % missing = 0.98 | |
Score RF+Imp. with the 26.347275673 % missing = 0.99 | |
Score RF with the 26.8534359334 % missing = 0.98 | |
Score RF+Imp. with the 26.8534359334 % missing = 0.99 | |
Score RF with the 27.3326508715 % missing = 0.98 | |
Score RF+Imp. with the 27.3326508715 % missing = 0.99 | |
Score RF with the 27.7895579896 % missing = 0.98 | |
Score RF+Imp. with the 27.7895579896 % missing = 0.99 | |
Score RF with the 28.2251995305 % missing = 0.98 | |
Score RF+Imp. with the 28.2251995305 % missing = 0.99 | |
Score RF with the 28.6352089113 % missing = 0.98 | |
Score RF+Imp. with the 28.6352089113 % missing = 0.99 | |
Score RF with the 29.0269296408 % missing = 0.99 | |
Score RF+Imp. with the 29.0269296408 % missing = 0.99 | |
Score RF with the 29.3992557303 % missing = 0.99 | |
Score RF+Imp. with the 29.3992557303 % missing = 0.99 | |
Score RF with the 29.7540389935 % missing = 0.98 | |
Score RF+Imp. with the 29.7540389935 % missing = 0.99 | |
Score RF with the 30.0889495238 % missing = 0.99 | |
Score RF+Imp. with the 30.0889495238 % missing = 0.99 | |
Score RF with the 30.4072383537 % missing = 0.99 | |
Score RF+Imp. with the 30.4072383537 % missing = 0.99 | |
Score RF with the 30.7117740413 % missing = 0.99 | |
Score RF+Imp. with the 30.7117740413 % missing = 0.99 | |
Score RF with the 30.9991270659 % missing = 0.99 | |
Score RF+Imp. with the 30.9991270659 % missing = 0.99 | |
Score RF with the 31.2725134 % missing = 0.99 | |
Score RF+Imp. with the 31.2725134 % missing = 0.99 | |
Score RF with the 31.5319171071 % missing = 0.99 | |
Score RF+Imp. with the 31.5319171071 % missing = 0.99 | |
Score RF with the 31.7783836172 % missing = 0.99 | |
Score RF+Imp. with the 31.7783836172 % missing = 0.99 | |
he |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.datasets import fetch_covtype, load_digits, load_iris | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.model_selection import StratifiedShuffleSplit | |
from sklearn.pipeline import Pipeline | |
from sklearn.preprocessing import Imputer | |
from sklearn.model_selection import cross_val_score | |
rng = np.random.RandomState(0) | |
from time import time | |
# dataset = load_digits() | |
# dataset = load_iris() | |
dataset = fetch_covtype() | |
X, y = dataset.data, dataset.target | |
# Take only 2 classes | |
# mask = y < 3 | |
# mask = (y == 1) | (y == 2) | |
# X = X[mask] | |
# y = y[mask] | |
# plt.hist(y) | |
# plt.show() | |
# X, y = X[::20].copy(), y[::20].copy() | |
X, y = X[::2].copy(), y[::2].copy() | |
n_samples, n_features = X.shape | |
n_estimators = 100 | |
n_jobs = -1 | |
rng = np.random.RandomState(42) | |
cv = StratifiedShuffleSplit(n_iter=3, test_size=0.3, random_state=rng) | |
print "The shape of the dataset is %s" % str(X.shape) | |
print "The number of trees for this benchmarking is %s" % n_estimators | |
start = time() | |
# Estimate the score on the entire dataset, with no missing values | |
estimator = RandomForestClassifier(random_state=0, n_estimators=n_estimators, | |
missing_values=None, n_jobs=n_jobs) | |
score = cross_val_score(estimator, X, y, cv=cv).mean() | |
end = time() | |
print "Score with the entire dataset = %.2f in %d seconds" % (score, end - start) | |
baseline_score = score | |
scores_missing = [] | |
scores_impute = [] | |
rf_missing = RandomForestClassifier(random_state=0, n_estimators=n_estimators, | |
missing_values='NaN', n_jobs=n_jobs) | |
rf_impute = Pipeline([("imputer", Imputer(missing_values='NaN', | |
strategy="median", axis=0)), | |
("forest", RandomForestClassifier( | |
random_state=0, | |
n_estimators=n_estimators, | |
n_jobs=n_jobs))]) | |
missing_fraction_range = [] | |
missing_mask = np.zeros(X.shape, dtype=bool) | |
X_missing = X.copy() | |
X_missing_feat_min = X.copy() | |
for _ in range(70): | |
rv = rng.randn(*X.shape) | |
thresh = np.sort(rv.ravel())[int(0.05 * n_samples * n_features)] | |
missing_mask += rv < thresh | |
missing_mask[y!=2] = False # Features should go missing only for y=1 | |
missing_fraction = np.mean(missing_mask) | |
missing_fraction_range.append(missing_fraction) | |
X_missing[missing_mask] = np.nan | |
train, test = iter(cv.split(X, y)).next() | |
# print(len(train), len(test)) | |
# score_missing = rf_missing.fit(X_missing[train], y[train]).score(X[test], y[test]) | |
# score_impute = rf_impute.fit(X_missing[train], y[train]).score(X[test], y[test]) | |
start = time() | |
score_missing = cross_val_score(rf_missing, X_missing, y, cv=cv).mean() | |
end = time() | |
scores_missing.append(score_missing) | |
print ("Score RF with the %s %% missing = %.2f in %d seconds" | |
% (missing_fraction*100, score_missing, end - start)) | |
start = time() | |
score_impute = cross_val_score(rf_impute, X_missing, y, cv=cv).mean() | |
end = time() | |
scores_impute.append(score_impute) | |
print ("Score RF+Imp. with the %s %% missing = %.2f in %d seconds" | |
% (missing_fraction*100, score_impute, end - start)) | |
np.save('scores_missing.npy', scores_missing) | |
np.save('scores_impute.npy', scores_impute) | |
np.save('missing_fraction_range.npy', missing_fraction_range) | |
np.save('baseline_score.npy', baseline_score) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
baseline_score = np.load('baseline_score.npy') | |
missing_fraction_range = np.load('missing_fraction_range.npy') | |
scores_missing = np.load('scores_missing.npy') | |
scores_impute = np.load('scores_impute.npy') | |
plt.close('all') | |
plt.plot(missing_fraction_range, scores_missing, 'o--', color='r', label='RF mv') | |
plt.plot(missing_fraction_range, scores_impute, 'o--', color='b', label='RF imp.') | |
plt.axhline(baseline_score, label='no missing', color='k') | |
plt.xlabel('Missing fraction') | |
plt.ylabel('Score') | |
plt.legend(loc='best') | |
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"At host \"tsilinuxd74\" with 16 cores. Current Dir - /cal/homes/vrajagopalan/raghav/miss_val_bench\n", | |
"sklearn 0.18.dev0 in branch \"missing_values_rf\", (last commit \"359cc5d\")- np v1.10.4 - scipy v0.17.0\n", | |
"Running on IPython v4.0.3; Python 2.7.11 :: Anaconda 2.5.0 (64-bit)\n", | |
"@ /tsi/doctorants/raghav/anaconda/anaconda3\n" | |
] | |
} | |
], | |
"source": [ | |
"# Confirm if this is Alex's PC\n", | |
"import IPython\n", | |
"import sklearn, numpy as np, scipy\n", | |
"from ast import literal_eval\n", | |
"CURR_IPYTHON_VERSION = IPython.__version__\n", | |
"PYTHON_INPT_VERSION = literal_eval(IPython.sys_info())['sys_executable'] + \" --version\"\n", | |
"SKVERSION = sklearn.__version__; SCVERSION = scipy.__version__; NPVERSION = np.__version__\n", | |
"!echo \"At host \\\"$(hostname)\\\" with $(nproc) cores. Current Dir - $(pwd)\"; \n", | |
"!echo -n \"sklearn $(python -c 'import sklearn; print sklearn.__version__') \"\n", | |
"!echo -n \"in branch \\\"$(git --git-dir $HOME/raghav/scikit-learn/.git rev-parse --abbrev-ref HEAD)\\\", \"\n", | |
"!echo -n \"(last commit \\\"$(git --git-dir $HOME/raghav/scikit-learn/.git log --pretty=format:'%h' -n 1)\\\")\"\n", | |
"!echo -e -n \"- np v$NPVERSION - scipy v$SCVERSION\\nRunning on IPython v$CURR_IPYTHON_VERSION; \"\n", | |
"!echo -n \"`$PYTHON_INPT_VERSION`\"\n", | |
"!echo \"@ /tsi/doctorants/raghav/anaconda/anaconda3\"" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"from matplotlib import pyplot as plt\n", | |
"import numpy as np\n", | |
"plt.rcParams['figure.figsize'][:] = [10, 10]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"/home/rvraghav93/Desktop/scikit_sandbox/adult_dataset\n" | |
] | |
} | |
], | |
"source": [ | |
"cd ../adult_dataset/" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"baseline_score = np.load('baseline_score.npy')\n", | |
"missing_fraction_range = np.load('missing_fraction_range.npy')\n", | |
"scores_missing = np.load('scores_missing.npy')\n", | |
"scores_impute = np.load('scores_impute.npy')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"plt.close('all')\n", | |
"plt.plot(missing_fraction_range, seconds_missing, '.--', color='r', label='RF MV enabled')\n", | |
"plt.plot(missing_fraction_range, seconds_impute, '.--', color='b', label='RF+imputer')\n", | |
"plt.axhline(35, label='RF w/No missing', color='k')\n", | |
"#for sample_pt in missing_fraction_range:\n", | |
"# plt.axvline(sample_pt, linestyle='--', color='g')\n", | |
"plt.xlabel('Missing fraction')\n", | |
"plt.ylabel('Time taken for cross_val_score using 3 iterations of StratifiedShuffleSplit in seconds')\n", | |
"plt.legend(loc='best')\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.datasets import fetch_mldata\n", | |
"\n", | |
"adult = fetch_mldata('yeast')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"cat_feats = np.load('cat_feats.npy').tolist()\n", | |
"feat_names = np.load('feat_names.npy').tolist()\n", | |
"data = np.load('data.npy')\n", | |
"target = np.load('target.npy')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"((48842, 12), dtype('float64'))" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data.shape, data.dtype" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"1.1030465582899962" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.mean(np.isnan(data)) * 100" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.ensemble import RandomForestClassifier\n", | |
"from sklearn.model_selection import StratifiedShuffleSplit\n", | |
"from sklearn.model_selection import StratifiedKFold\n", | |
"from sklearn.pipeline import Pipeline\n", | |
"from sklearn.preprocessing import Imputer\n", | |
"from sklearn.model_selection import cross_val_score\n", | |
"import time" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"The cross val score with RF (MV) (computed in 57.51 seconds). 0.8525\n", | |
"The cross val score with RF+Imp(Median) (computed in 56.93 seconds). 0.8488\n", | |
"The cross val score with RF+Imp(Mean) (computed in 59.11 seconds). 0.8486\n" | |
] | |
} | |
], | |
"source": [ | |
"rf_missing = RandomForestClassifier(n_estimators=100,\n", | |
" missing_values='NaN',\n", | |
" n_jobs=-1)\n", | |
"\n", | |
"rf_impute = Pipeline([('imp', Imputer(strategy='mean')), \n", | |
" ('rf', RandomForestClassifier(n_estimators=100,\n", | |
" n_jobs=-1))])\n", | |
"\n", | |
"\n", | |
"rf_impute2 = Pipeline([('imp', Imputer(strategy='mean')), \n", | |
" ('rf', RandomForestClassifier(n_estimators=100,\n", | |
" n_jobs=-1))])\n", | |
"\n", | |
"cv = StratifiedKFold(n_folds=15)\n", | |
"\n", | |
"\n", | |
"print \"The cross val score with RF (MV) (computed in \", \n", | |
"t = time.time()\n", | |
"cv_rf_missing = cross_val_score(rf_missing, X=data, y=target, cv=cv)\n", | |
"t -= time.time()\n", | |
"print \"%0.2f seconds).\" % abs(t), \n", | |
"print \"%0.4f\" % np.mean(cv_rf_missing)\n", | |
"\n", | |
"print \"The cross val score with RF+Imp(Median) (computed in \", \n", | |
"t = time.time()\n", | |
"cv_rf_imp_median = cross_val_score(rf_impute, X=data, y=target, cv=cv)\n", | |
"t -= time.time()\n", | |
"print \"%0.2f seconds).\" % abs(t), \n", | |
"print \"%0.4f\" % np.mean(cv_rf_imp_median)\n", | |
"\n", | |
"print \"The cross val score with RF+Imp(Mean) (computed in \", \n", | |
"t = time.time()\n", | |
"cv_rf_imp_mean = cross_val_score(rf_impute2, X=data, y=target, cv=cv)\n", | |
"t -= time.time()\n", | |
"print \"%0.2f seconds).\" % abs(t), \n", | |
"print \"%0.4f\" % np.mean(cv_rf_imp_mean)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(48842, 12)" | |
] | |
}, | |
"execution_count": 37, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"\n", | |
"data.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 42, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(6, 1)\n", | |
"[1 1 1 0 0 0]\n" | |
] | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"\n", | |
"from sklearn.cluster import KMeans\n", | |
"\n", | |
"km = KMeans(n_clusters=2)\n", | |
"X = np.array([[1], [2], [3], [10], [12], [13]])\n", | |
"km.fit(X)\n", | |
"\n", | |
"print X.shape\n", | |
"\n", | |
"print km.labels_" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 46, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/home/rvraghav93/.local/lib/python2.7/site-packages/sklearn/utils/validation.py:407: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", | |
" DeprecationWarning)\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"KMeans(copy_x=True, init='k-means++', max_iter=300, n_clusters=1, n_init=10,\n", | |
" n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001,\n", | |
" verbose=0)" | |
] | |
}, | |
"execution_count": 46, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"km = KMeans(n_clusters=1)\n", | |
"km.fit(np.ravel(X))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 47, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([0], dtype=int32)" | |
] | |
}, | |
"execution_count": 47, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"km.labels_" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 50, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.tree import export_graphviz" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 51, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"export_graphviz?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"The shape of the dataset is (581012, 54)\r\n", | |
"The number of trees for this benchmarking is 100\r\n", | |
"Score with the entire dataset = 0.95\r\n", | |
"Score RF with the 1.82173199202 % missing = 0.94\r\n", | |
"Score RF+Imp. with the 1.82173199202 % missing = 0.95\r\n", | |
"Score RF with the 3.55273467929 % missing = 0.96\r\n", | |
"Score RF+Imp. with the 3.55273467929 % missing = 0.96\r\n", | |
"Score RF with the 5.19537302857 % missing = 0.96\r\n", | |
"Score RF+Imp. with the 5.19537302857 % missing = 0.96\r\n", | |
"Score RF with the 6.75907503408 % missing = 0.97\r\n", | |
"Score RF+Imp. with the 6.75907503408 % missing = 0.97\r\n", | |
"Score RF with the 8.24469488869 % missing = 0.97\r\n", | |
"Score RF+Imp. with the 8.24469488869 % missing = 0.97\r\n", | |
"Score RF with the 9.65472823791 % missing = 0.97\r\n", | |
"Score RF+Imp. with the 9.65472823791 % missing = 0.97\r\n", | |
"Score RF with the 10.9961424906 % missing = 0.97\r\n", | |
"Score RF+Imp. with the 10.9961424906 % missing = 0.98\r\n", | |
"Score RF with the 12.2712707406 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 12.2712707406 % missing = 0.98\r\n", | |
"Score RF with the 13.4793894739 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 13.4793894739 % missing = 0.98\r\n", | |
"Score RF with the 14.6313482146 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 14.6313482146 % missing = 0.98\r\n", | |
"Score RF with the 15.722225792 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 15.722225792 % missing = 0.98\r\n", | |
"Score RF with the 16.7580461779 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 16.7580461779 % missing = 0.98\r\n", | |
"Score RF with the 17.7444126226 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 17.7444126226 % missing = 0.98\r\n", | |
"Score RF with the 18.6789537846 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 18.6789537846 % missing = 0.99\r\n", | |
"Score RF with the 19.5694338945 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 19.5694338945 % missing = 0.98\r\n", | |
"Score RF with the 20.4148903918 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 20.4148903918 % missing = 0.98\r\n", | |
"Score RF with the 21.2185360613 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 21.2185360613 % missing = 0.99\r\n", | |
"Score RF with the 21.9800458 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 21.9800458 % missing = 0.99\r\n", | |
"Score RF with the 22.7055551348 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 22.7055551348 % missing = 0.99\r\n", | |
"Score RF with the 23.3928265904 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 23.3928265904 % missing = 0.99\r\n", | |
"Score RF with the 24.0459845159 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 24.0459845159 % missing = 0.99\r\n", | |
"Score RF with the 24.6653890746 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 24.6653890746 % missing = 0.99\r\n", | |
"Score RF with the 25.2552315487 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 25.2552315487 % missing = 0.99\r\n", | |
"Score RF with the 25.8147979859 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 25.8147979859 % missing = 0.99\r\n", | |
"Score RF with the 26.347275673 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 26.347275673 % missing = 0.99\r\n", | |
"Score RF with the 26.8534359334 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 26.8534359334 % missing = 0.99\r\n", | |
"Score RF with the 27.3326508715 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 27.3326508715 % missing = 0.99\r\n", | |
"Score RF with the 27.7895579896 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 27.7895579896 % missing = 0.99\r\n", | |
"Score RF with the 28.2251995305 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 28.2251995305 % missing = 0.99\r\n", | |
"Score RF with the 28.6352089113 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 28.6352089113 % missing = 0.99\r\n", | |
"Score RF with the 29.0269296408 % missing = 0.99\r\n", | |
"Score RF+Imp. with the 29.0269296408 % missing = 0.99\r\n", | |
"Score RF with the 29.3992557303 % missing = 0.99\r\n", | |
"Score RF+Imp. with the 29.3992557303 % missing = 0.99\r\n", | |
"Score RF with the 29.7540389935 % missing = 0.98\r\n", | |
"Score RF+Imp. with the 29.7540389935 % missing = 0.99\r\n", | |
"Score RF with the 30.0889495238 % missing = 0.99\r\n", | |
"Score RF+Imp. with the 30.0889495238 % missing = 0.99\r\n", | |
"Score RF with the 30.4072383537 % missing = 0.99\r\n", | |
"Score RF+Imp. with the 30.4072383537 % missing = 0.99\r\n", | |
"Score RF with the 30.7117740413 % missing = 0.99\r\n", | |
"Score RF+Imp. with the 30.7117740413 % missing = 0.99\r\n", | |
"Score RF with the 30.9991270659 % missing = 0.99\r\n", | |
"Score RF+Imp. with the 30.9991270659 % missing = 0.99\r\n", | |
"Score RF with the 31.2725134 % missing = 0.99\r\n", | |
"Score RF+Imp. with the 31.2725134 % missing = 0.99\r\n", | |
"Score RF with the 31.5319171071 % missing = 0.99\r\n", | |
"Score RF+Imp. with the 31.5319171071 % missing = 0.99\r\n", | |
"Score RF with the 31.7783836172 % missing = 0.99\r\n", | |
"Score RF+Imp. with the 31.7783836172 % missing = 0.99\r\n", | |
"he\r\n" | |
] | |
} | |
], | |
"source": [ | |
"k" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.11" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment