Skip to content

Instantly share code, notes, and snippets.

@rahulbhadani
Last active June 24, 2020 09:22
Show Gist options
  • Save rahulbhadani/eb705711832ac8d6afe21d37062950a2 to your computer and use it in GitHub Desktop.
Save rahulbhadani/eb705711832ac8d6afe21d37062950a2 to your computer and use it in GitHub Desktop.
UMAP Visualization
import umap
import zipfile
import urllib.request
import pandas as pd
import umap
urllib.request.urlretrieve("https://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2230nnn/GSM2230760/suppl/GSM2230760_human4_umifm_counts.csv.gz", 'GSM2230760_human4_umifm_counts.csv.gz')
data = pd.read_csv('GSM2230760_human4_umifm_counts.csv.gz')
data.drop(columns='Unnamed: 0', inplace=True)
data.set_index("barcode", inplace=True)
reducer = umap.UMAP()
embedding = reducer.fit_transform(data.loc[:, data.columns != 'assigned_cluster'].values)
import matplotlib.pyplot as plt
import seaborn as sn
print(data.assigned_cluster.unique())
# Map the cell types to categorical variable (integer number) for color coding
clr = data.assigned_cluster.map({"ductal":0, "delta":1, "alpha":2, "activated_stellate": 3, "beta": 4, "macrophage": 5, "quiescent_stellate": 6, "acinar":7, "gamma":8, "epsilon":9, "endothelial":10, "t_cell":11, "mast":12, "schwann":13})
plt.rcParams['figure.figsize'] = [26.0, 24.0]
plt.scatter(
embedding[:, 0],
embedding[:, 1], s =10,
c=clr, cmap="magma")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment