Last active
January 9, 2020 08:39
-
-
Save rahulvigneswaran/bd0bbe7cdca033fb1b277c14386c3231 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import numpy as np | |
from scipy.stats import wasserstein_distance, energy_distance | |
from matplotlib import pyplot as plt | |
epoch_name = "epoch_1_" | |
epoch = 1 | |
a = os.getcwd() | |
root, dirs, files = next(os.walk(a)) | |
dirs.sort() | |
def norm_vals (arr) : | |
for ei in range(len(arr)) : | |
if arr[ei] == 0: arr[ei] = arr[ei] + min(arr) | |
return arr | |
for i in dirs : | |
if 'model' in i : | |
temp = 1 | |
else : | |
dirs.remove(i) | |
for i in dirs : | |
full = np.load(f"{os.getcwd()}/{i}/ckpt/training_eigenspectrum_full.npy") | |
full_eigval = full[::2] | |
full_eigval_density = full[1::2] | |
a = f"{os.getcwd()}/{i}/ckpt" | |
root, dirs2, files = next(os.walk(a)) | |
dirs2.sort() | |
print(f"\nFolder in Progress: {i}") | |
print("==================================\n") | |
distance = [] | |
for j in files : | |
if 'layer' in j : | |
temp1 = 1 | |
else : | |
files.remove(j) | |
tick = [] | |
for j in files : | |
if epoch_name in j: | |
layer = np.load(f"{os.getcwd()}/{i}/ckpt/{j}") | |
#full_eigval_density[epoch] = ((1-0)/(max(full_eigval_density[epoch])-min(full_eigval_density[epoch]))*(full_eigval_density[epoch]- min(full_eigval_density[epoch]))+ 0) | |
layer_eigval = layer['eigval'] | |
layer_density = layer['eigval_density'] | |
#layer_density = ((1-0)/(max(layer_density) - min(layer_density))*(layer_density - min(layer_density))+ 0) | |
#Convert to log scale | |
full_eigval_density[epoch] = norm_vals(full_eigval_density[epoch]) | |
layer_density = norm_vals(layer_density) | |
#Normalize between 0 and 1 | |
full_eigval[epoch] = ((1-0)/(max(full_eigval[epoch])-min(full_eigval[epoch]))*(full_eigval[epoch]- min(full_eigval[epoch]))+ 0) | |
layer_eigval = ((1-0)/(max(layer_eigval)-min(layer_eigval))*(layer_eigval- min(layer_eigval))+ 0) | |
b = wasserstein_distance(full_eigval[epoch],layer_eigval, full_eigval_density[epoch],layer_density) | |
distance = np.hstack((distance,b)) | |
print(f"Layer : {j} | Wasserstein Distance : {b}") | |
c = j.split(epoch_name) | |
tick = np.hstack((tick,c[1])) | |
plt.plot(np.arange(0,len(tick)), distance) | |
plt.xticks(np.arange(0,len(tick)),tick,rotation='vertical') | |
plt.title(f"(Epoch : {epoch} | {i})") | |
plt.ylim(0,100) | |
plt.savefig(f"{os.getcwd()}/plots/{i}_epoch_{epoch}.png") | |
plt.close() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment