Created
September 11, 2015 18:44
-
-
Save raichoo/fb8bf092281639bbdb3a to your computer and use it in GitHub Desktop.
Codensity Monad in Agda
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Codensity where | |
open import Level | |
open import Function | |
data Codensity {l} (M : Set l → Set l) (A : Set l) : Set (suc l) where | |
codensity : ({B : Set l} → (A → M B) → M B) → Codensity M A | |
runCodensity : ∀ {l} {A : Set l} {M : Set l → Set l} | |
→ Codensity M A | |
→ ({B : Set l} → (A → M B) → M B) | |
runCodensity (codensity c) = c | |
record Functor {l₁ l₂} (F : Set l₁ → Set l₂) : Set (suc (l₁ ⊔ l₂)) where | |
field | |
map : {A B : Set l₁} → (A → B) → F A → F B | |
open Functor ⦃...⦄ | |
instance | |
codensity-Functor : ∀ {l} {M : Set l → Set l} → Functor (Codensity {l} M) | |
codensity-Functor {l} {M} = record { map = codensity-map } | |
where | |
codensity-map : {A B : Set l} → (A → B) → Codensity M A → Codensity M B | |
codensity-map f (codensity c) = codensity λ k → c (k ∘ f) | |
record Applicative {l₁ l₂} (F : Set l₁ → Set l₂) : Set (suc (l₁ ⊔ l₂)) where | |
field | |
pure : {A : Set l₁} → A → F A | |
_⊛_ : {A B : Set l₁} → F (A → B) → F A → F B | |
open Applicative ⦃...⦄ | |
instance | |
codensity-Applicative : ∀ {l} {M : Set l → Set l} → Applicative (Codensity M) | |
codensity-Applicative {l} {M} = record { pure = codensity-pure | |
; _⊛_ = codensity-⊛ | |
} | |
where | |
codensity-pure : {A : Set l} → A → Codensity M A | |
codensity-pure x = codensity λ k → k x | |
codensity-⊛ : {A B : Set l} → Codensity M (A → B) → Codensity M A → Codensity M B | |
codensity-⊛ (codensity f) (codensity x) = codensity λ k → x (λ x' → f (λ f' → k (f' x'))) | |
record Monad {l₁ l₂} (M : Set l₁ → Set l₂) : Set (suc (l₁ ⊔ l₂)) where | |
field | |
unit : {A : Set l₁} → A → M A | |
_⟫=_ : {A B : Set l₁} → M A → (A → M B) → M B | |
open Monad ⦃...⦄ | |
instance | |
codensity-Monad : ∀ {l} {M : Set l → Set l} → ⦃ F : Applicative M ⦄ → Monad (Codensity M) | |
codensity-Monad {l} {M} = record { unit = pure | |
; _⟫=_ = codensity-⟫= | |
} | |
where | |
codensity-⟫= : {A B : Set l} → Codensity M A → (A → Codensity M B) → Codensity M B | |
codensity-⟫= (codensity x) f = codensity (λ k → x (λ x' → runCodensity (f x') k)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment