Created
August 27, 2024 01:39
-
-
Save raivivek/16b26b586130845169e510049fcc6026 to your computer and use it in GitHub Desktop.
Share with Kehinde / raivivek / DeSeq2 analysis of raw bulk RNA-seq
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[...] | |
run_differential <- function(counts_mat, metadata, | |
design = "Disease.Status + Age + Sex + BMI", | |
min_reads_per_sample = 5, | |
min_fraction_of_sample = .25) { | |
sample_ids <- colnames(counts_mat) | |
message(glue("info: counts matrix: {paste(dim(counts_mat), collapse = ', ')} \t Covariate matrix: {paste(dim(metadata), collapse = ', ')}")) | |
message("info: preparing colData..") | |
colData <- metadata %>% | |
mutate(Sample.ID = factor(Sample.ID, levels = sample_ids, ordered = T), | |
Sex = factor(Sex), | |
Age = scale(Age), | |
BMI = scale(BMI)) %>% | |
arrange(Sample.ID) %>% | |
column_to_rownames(var = "Sample.ID") | |
message(glue("info: filtering genes using {min_reads_per_sample} reads per sample in >={min_fraction_of_sample*100}% of samples..")) | |
counts_mat <- counts_mat[apply(counts_mat, 1, function(x) sum(x > min_reads_per_sample) >= length(x) * min_fraction_of_sample), ] | |
message(glue("info: left with {nrow(counts_mat)} genes..")) | |
if (any(rownames(colData) != colnames(counts_mat))) { print("names don't match. check or error!") } | |
message("info: creating dds object..") | |
dds <- DESeq2::DESeqDataSetFromMatrix(countData = counts_mat, colData = colData, | |
design = ~ !!treat_string_as_expr(design)) | |
message("info: starting differential analysis..") | |
dds <- DESeq2::DESeq(dds) | |
rld <- DESeq2::varianceStabilizingTransformation(dds, blind=TRUE) | |
message("info: done.") | |
return(list(dds = dds, rld = rld)) | |
} | |
# Start reading data | |
counts <- read_tsv(opts$counts_file) # counts | |
protein_coding_idx <- opts$gtf$type == "gene" & opts$gtf$gene_type == "protein_coding" & (!seqnames(opts$gtf) %in% c("chrX", "chrY", "chrM")) | |
select_idx <- counts$Geneid %in% opts$gtf[protein_coding_idx, ]$gene_id # only protein coding | |
counts_mat <- as.matrix(counts[select_idx, -c(1:2)]) | |
rownames(counts_mat) <- opts$gtf[protein_coding_idx, ]$gene_id | |
metadata <- readRDS(opts$metadata) %>% | |
filter(!!treat_inputs_as_exprs(opts$samples_exclude_string)) | |
# exclude QC'ed samples | |
counts_mat <- counts_mat[, colnames(counts_mat) %in% opts$metadata[[opts$samples_name_col]]] | |
resDe <- run_differential( | |
counts_mat, | |
metadata, | |
design = opts$design, | |
min_reads_per_sample = opts$min_reads_per_sample, | |
min_fraction_of_sample = opts$min_fraction_of_sample | |
) | |
result <- results(resDe$dds, contrast = c(str_split(opts$contrast, ",", simplify = T))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment